
Publication date : 03/26/2024

PARTICIPANTS

Developers, software architects and

project managers. 

PREREQUISITES

Basic knowledge of Java and the use

of an IDE (Eclipse, IntelliJ...).

TRAINER QUALIFICATIONS

The experts leading the training are

specialists in the covered subjects.

They have been approved by our

instructional teams for both their

professional knowledge and their

teaching ability, for each course they

teach. They have at least five to ten

years of experience in their field and

hold (or have held) decision-making

positions in companies.

ASSESSMENT TERMS

The trainer evaluates each

participant’s academic progress

throughout the training using

multiple choice, scenarios, hands-on

work and more.

Participants also complete a

placement test before and after the

course to measure the skills they’ve

developed.

Course : Java, multithreaded
programming
Practical course - 4d - 28h00 - Ref. JQT

Multithreaded programming in Java is becoming increasingly important thanks
to the widespread use of multiprocessor architectures: it simplifies the design
and development of applications with intrinsic parallelism, and offers effective
solutions to performance problems.

Teaching objectives

Master multithreaded programming models and the
corresponding standard libraries
Know the main data structures suitable for multithreaded
programming
Know the main bugs and get an overview of solutions

Knowledge of test and debugging tools

Understanding the links between multithreaded programming and
performance

At the end of the training, the participant will be able to:

Intended audience
Developers, software architects and project managers.

Prerequisites
Basic knowledge of Java and the use of an IDE (Eclipse, IntelliJ...).

Course schedule

Basic concepts: task, execution resource, activity, execution service,
future.
Various concept implementations (Runnable, Callable<T>,
ExecutorService, Future<T>...).
Uncaught exceptions, thread groups.
The complete future.

1 Multithreaded programming models, interfaces and classes

Hands-on work
Programming an application combining the different models.



TEACHING AIDS AND TECHNICAL

RESOURCES 

• The main teaching aids and

instructional methods used in the

training are audiovisual aids,

documentation and course material,

hands-on application exercises and

corrected exercises for practical

training courses, case studies and

coverage of real cases for training

seminars. 

• At the end of each course or

seminar, ORSYS provides

participants with a course evaluation

questionnaire that is analysed by our

instructional teams. 

• A check-in sheet for each half-day

of attendance is provided at the end

of the training, along with a course

completion certificate if the trainee

attended the entire session.

TERMS AND DEADLINES

Registration must be completed 24

hours before the start of the training.

ACCESSIBILITY FOR PEOPLE WITH

DISABILITIES

Do you need special accessibility

accommodations? Contact Mrs.

Fosse, Disability Manager, at psh-

accueil@orsys.fr to review your

request and its feasibility.

Some formal specification methods.
A semi-formal specification method.
Implementing specifications.

Status "synchronized", "wait", "notify" and monitor programming.
Synchronization interfaces and classes: locks, semaphores, cyclic barriers.
Cue.

ExecutorService.
The fork/join model (RecursiveTask<T>, RecursiveAction, ForkJoinPool).

Specialized collections.
Local storage of thread data: ThreadLocal<T>.
Atomic classes.

The impact of thread creation.
The impact of synchronization.
The impact of memory caches.
Threads and IOs, DBs and graphics.
Threads and scheduling.

Asynchronous models: JReact.
Actor models (Akka Actor4J...).
Synchronous reactive models.

JConsole, jstack.
The JArmus bookshop.
Lamport's temporal logic: TLA+.
Common errors: contention, dormancy, deadlock, premature termination.

2 Constraints on the correct behavior of activities

Hands-on work
Use of formal specification methods.

3 Thread synchronization and communication

Hands-on work
Use interfaces and synchronization classes.

4 Parallel task execution

Hands-on work
Use of runtime services and the fork/join model.

5 Data structures dedicated to multithreaded programming

Hands-on work
Use of data structures.

6 Threads and performance

Hands-on work
Optimisation des programmes.

7 Alternative models

8 Tools for developing competitive programs




	Course : Java, multithreaded programming
	Practical course - 4d - 28h00 - Ref. JQT
	1 Multithreaded programming models, interfaces and classes
	2 Constraints on the correct behavior of activities
	3 Thread synchronization and communication
	4 Parallel task execution
	5 Data structures dedicated to multithreaded programming
	6 Threads and performance
	7 Alternative models
	8 Tools for developing competitive programs


