
Publication date : 03/15/2024

PARTICIPANTS

Developers, engineers, project

managers close to development.

PREREQUISITES

Knowledge of a programming

language.

TRAINER QUALIFICATIONS

The experts leading the training are

specialists in the covered subjects.

They have been approved by our

instructional teams for both their

professional knowledge and their

teaching ability, for each course they

teach. They have at least five to ten

years of experience in their field and

hold (or have held) decision-making

positions in companies.

ASSESSMENT TERMS

The trainer evaluates each

participant’s academic progress

throughout the training using

multiple choice, scenarios, hands-on

work and more.

Participants also complete a

placement test before and after the

course to measure the skills they’ve

developed.

Course : Developing in object-
oriented Python, API Society
certification
Practical course - 4d - 28h00 - Ref. YPT
Price : 2630 € E.T.

 4,8 / 5

Python is a programming language widely used in web applications, software
development, data science, finance, cartography, artificial intelligence and
machine learning. This course will teach you basic syntax, different data types,
conditional and repeating structures, functions, modules, packages, file
manipulation and exception handling.

Teaching objectives

Know the syntax of the Python language

Knowing and manipulating fundamental data types

Use and define functions, modules, packages, exceptions,
manipulate files
Understand the theory of object-oriented programming and how
to put it into practice in Python
Know and use the essential modules of the standard library

At the end of the training, the participant will be able to:

Intended audience
Developers, engineers, project managers close to development.

Prerequisites
Knowledge of a programming language.

Certification
The certification exam takes place online, off-line and in French, in the month
following the training course. It consists of a 20-minute theory test - 40
True/False MCQ-type questions and information to be entered, and a practical
programming test (code exercise).

Practical details

javascript:void(0)

TEACHING AIDS AND TECHNICAL

RESOURCES

• The main teaching aids and

instructional methods used in the

training are audiovisual aids,

documentation and course material,

hands-on application exercises and

corrected exercises for practical

training courses, case studies and

coverage of real cases for training

seminars.

• At the end of each course or

seminar, ORSYS provides

participants with a course evaluation

questionnaire that is analysed by our

instructional teams.

• A check-in sheet for each half-day

of attendance is provided at the end

of the training, along with a course

completion certificate if the trainee

attended the entire session.

TERMS AND DEADLINES

Registration must be completed 24

hours before the start of the training.

ACCESSIBILITY FOR PEOPLE WITH

DISABILITIES

Do you need special accessibility

accommodations? Contact Mrs.

Fosse, Disability Manager, at psh-

accueil@orsys.fr to review your

request and its feasibility.

Practical details

Individual and group practical work, collective reflection.

Active pedagogy encouraging personal involvement and exchanges between
participants.

Hands-on work

Teaching methods

Course schedule

History (author, date of first version).
Python versions (branches 2 and 3).
Language features (multi-paradigm, strong dynamic typing, clear syntax).
Panorama of the standard library.
Expansion modules and pip control.
How the PYC bytecode interpreter works.
Official CPython interpreter and other interpreters (micropython,
brython, pypy, numba).
Resources (python.org website, access to documentation).
Help() function and document chains.
Principle of indentation to delimit instruction blocks.
Commentary.
Reserved keywords.
Naming conventions.
Interactive interpreter.
Stand-alone program.
Basic built-in functions: print(), type(), input(), len().

Usefulness of non-modifiable types (memory optimization), id() and hash()
functions, is operator.
Principle of ordered sequences (str, tuple and list) and collections (dict,
set).
Boolean (bool), True and False objects.
Number (int, float, complex), constructors, operators >>, <<, |, &, ^, //, %
and **.
Exponential, binary, octal and hexadecimal notation, hex(), oct(), bin(), chr(),
ord() functions.
Unicode string (str), definition with single and double quotation marks,
multiline strings, raw mode.
Positive and negative signalling, slice, +, * and in operators, iteration.
Essential str methods: split(), replace(), lower(), upper(), strip(), join().
Formatted string (%s, %d, %f), format() method and f-string.
Principle of variable depacking.
Byte array, manufacturer.
Tuple (tuple), constructor, indexing, iteration, +, * and in operators, count()
and index() methods.
None object and repr() function.

1 Introduction

2 Non-modifiable data types

Lists (list), constructor, indexing, integration, +, * and in operators.
Append(), insert() methods, del() function, sort(), reverse(), remove(),
extend(), pop(), clear() methods.
Pointer manipulation, superficial copying using the copy() method or [:]
markers.
Study deep copying with the copy module's deepcopy() function.
Sorted function.
How iterable objects work.
Reversed() and range() functions.
Dictionaries (dict), constructor, indexing, in operator, del() function.
Pointer manipulation, superficial copying using the copy() method;
Deep copy analysis with the copy module's deepcopy() function.
Set (set), constructor, operators - | & and ^.

Conditional structure if ... elif ... else.
Ternary and Morse operator.
Repetitive while structure.
Repetitive structure for.
Break and continue instructions.
Enumerate function.
Block else on repetitive structure.
Intension list (comprehension list), intension dictionary (comprehension
dict).

Defining and calling a function.
Local, global, predefined namespace (__builtins__) and dir() function.
Return values, , return instruction.
Generic functions (duck typing).
Default values.
Passage by label.
Arbitrary number of arguments (*args, **kwargs).
Anonymous (lambda) functions.
eval(), exec(), map() and filter() functions.
Import modules.
Create a module.
Block if __name__ == ''__main__''.
Package import.
Create a package (__init__.py).
Instruction yield.

Open() function and close() method.
Readline() and readlines() methods.
Iterable object.
Instruction with files.
Read() and write() methods.
Tell() and seek() methods.
Writelines() method.
Complementary modules: struct, csv, json, xml.
Serialization with the pickle module.
Serialization with the shelve module.

3 Modifiable data types

4 Conditional and repetitive structures

5 Functions, modules and packages

6 File handling

Fundamental OOP concepts (code separation, encapsulation, inheritance).
Notions of object class, object (instance), attribute and method.
Defining an object class.
Object instantiation, isinstance() function.
Constructor (__init__).
Attributes and methods.
The self parameter.
Display overload (__str__).
Operator overload (__eq__, __add__).
Property (special property function), accessor and mutator.
Global, object and class namespaces.
Class variable.
Constructor with arbitrary number of arguments (*args, **kwargs).
Aggregation / Composition.
Class inheritance (generalization), issubclass(), super() functions and mro()
method.

Operating principle.
Predefined exceptions and inheritance tree.
Instructions try ... except ... else ... finally.
Propagation of exceptions.
Triggering exceptions.
Exception definition.

Interaction with the interpreter: module sys.
Interaction with the operating system: os and pathlib modules.
Interaction with the file system: os.path module.
Regular expressions: re module, search(), match(), split() and sub()
functions.
Unit tests: assert statement, unittest module.
Tour d'horizon de modules de la bibliothèque standard :datetime, math,
timeit, urllib, collections, csv, json, sqlite3.
Introduction to datetime, subprocess, shutil, collections, timeit, urllib,
sqlite3...

7 Object-oriented programming

8 Exceptions

9 Standard library modules

Dates and locations

REMOTE CLASS
2026 : 24 Mar., 16 June, 29 Sep., 15 Dec.

PARIS LA DÉFENSE
2026 : 17 Mar., 9 June, 22 Sep., 15 Dec.

	Course : Developing in object-oriented Python, API Society certification
	Practical course - 4d - 28h00 - Ref. YPT Price : 2630 € E.T.
	1 Introduction
	2 Non-modifiable data types
	3 Modifiable data types
	4 Conditional and repetitive structures
	5 Functions, modules and packages
	6 File handling
	7 Object-oriented programming
	8 Exceptions
	9 Standard library modules

