
DEELNEMERS

Ontwikkelaars, projectleiders die zich

willen opleiden in objectgeoriënteerd

ontwerp.

VOORAFGAANDE VEREISTEN

Basiskennis van applicatieontwerp en

softwareontwikkeling.

VAARDIGHEDEN VAN DE

CURSUSLEIDER

De deskundigen die de cursus leiden

zijn specialisten op het betreffende

vakgebied. Zij werden geselecteerd

door onze pedagogische teams zowel

om hun vakkennis als hun

pedagogische vaardigheden voor elke

cursus die zij geven. Zij hebben

minstens vijf tot tien jaar ervaring in

hun vakgebied en oefenen of

oefenden verantwoordelijke

bedrijfsfuncties uit.

BEOORDELINGSMODALITEITEN

De cursusleider beoordeelt de

pedagogische vooruitgang van de

deelnemer gedurende de gehele

cursus aan de hand van

meerkeuzevragen, praktijksituaties,

praktische opdrachten, …

De deelnemer legt ook van tevoren en

naderhand een test af ter bevestiging

van de verworven kennis.

Opleiding : Ontwerp oriented
object
Ingineering objectsoftware

Praktijkcursus - 4d - 28u00 - Ref. COB
Prijs : 2100 € V.B.

Hoe kan men het object oriented ontwerp aanpakken? Hoe kan men overgaan
van een functionele benadering naar een objectbenadering? Hoe kan men object
oriented programma schrijven met echte schaalbaarheid en herbruikbaarheid?
Deze cursus biedt u een conceptuele en praktische beheersing van het
objectontwerp.

Pedagogische doelstellingen

De principes en specifieke eigenschappen van objectontwerp
begrijpen.
Omschakelen van een functionele naar een objectbenadering.

Modelleren van objectsoftware met behulp van UML-notatie.

Vertalen van het UML-model naar objecttaal.

De benaderingen beschrijven met frameworks en componenten.

Leren hoe men de Design Patronen kan implementeren.

Aan het einde van de training is de deelnemer in staat om:

Doelgroep
Ontwikkelaars, projectleiders die zich willen opleiden in objectgeoriënteerd
ontwerp.

Voorafgaande vereisten
Basiskennis van applicatieontwerp en softwareontwikkeling.

Praktische modaliteiten

De behandelde punten zullen worden geïllustreerd met tal van oefeningen die
speciaal zijn gekozen om de principes en bijzonderheden van het objectontwerp
te benadrukken, van de initiële analyse tot de implementatie in een objecttaal.

Praktisch werk

Opleidingsprogramma

PEDAGOGISCHE EN TECHNISCHE

MIDDELEN

• De gebruikte pedagogische

middelen en cursusmethoden zijn

voornamelijk: audiovisuele

hulpmiddelen, documentatie en

cursusmateriaal, praktische

oefeningen en correcties van de

oefeningen voor praktijkstages,

casestudies of reële voorbeelden

voor de seminars.

• Na afloop van de stages of seminars

verstrekt ORSYS de deelnemers een

evaluatievragenlijst over de cursus

die vervolgens door onze

pedagogische teams wordt

geanalyseerd.

• Na afloop van de cursus wordt een

presentielijst per halve dag verstrekt,

evenals een verklaring van de

afronding van de cursus indien de

stagiair alle sessies heeft bijgewoond.

TOEGANGSMODALITEITEN EN

TERMIJNEN

De inschrijving dient 24 uur voor

aanvang van de cursus

plaatsgevonden te hebben.

TOEGANKELIJKHEID VOOR

MINDERVALIDEN

Is voor u speciale toegankelijkheid

vereist? Neem contact op met mevr.

FOSSE, contactpersoon voor

mindervaliden, via het adres psh-

accueil@ORSYS.fr om uw verzoek en

de haalbaarheid daarvan zo goed

mogelijk te bestuderen.

Waarom objecttechnologieën gebruiken?
De uitdagingen van de nieuwe informatica: modulariteit (plug-ins),
herbruikbaarheid, schaalbaarheid.
Het gebruik van componentenbibliotheken. Hoe beantwoordt de Object-
aanpak aan deze uitdagingen?
Hoe kan men een Object-probleem aanpakken?
Kennis uit andere vakgebieden van de informatica en andere disciplines.

De objecten: dualiteit procedure/gegeven.
Klassen als structuurmodellen en gedrag van objecten, instanties als
vertegenwoordigers van klassen.
De gedefinieerde methoden en procedures in de klassen en gebruikt door
de instanties.
Interacties tussen objecten door het verzenden van berichten. Hoe worden
berichten geïnterpreteerd door de objecten?
De erfenis. Erfenis en typering van variabelen in sterk getypeerde talen
(C++, Java).

De belangrijkste diagrammen (klassendiagrammen,
sequentiediagrammen) en hun gebruik voor het objectontwerp.
De instrumenten voor het beoordelen en weergeven van objecten:
toepassing van een modelsysteem van de markt.

Wat kan men in de vorm van een object zetten? Principe van reïficatie.
Criteria die moeten worden toegepast om te beslissen wat in de vorm van
een Object moet worden gezet. De te vermijden fouten.
Hoe kan men een objectsoftware structureren? Principe van modulariteit
en ontleding van domeinen.
Hoe kan men een geheel aan klassen structureren? Abstractie- en
classificatiebeginsel.
Hoe kan men de interactie tussen objecten bedenken? Principe van
inkapseling en autonomie.
Complexe communicatiesystemen analyseren. De algemene aanpak. De te
vermijden fouten.
Toe te passen criteria om over "goede" klassenhiërarchieën te beschikken.
De te vermijden fouten.

De ontwikkelingsprincipes. Van spiraalvormige ontwikkeling tot
incrementele ontwikkeling.
Identificatie van de entiteiten van het domein en beschrijving van de
interacties. Hergebruik en schaalbaarheid van programma's.
Objectontwerp betekent niet het gebruik van een objecttool!
De te vermijden fouten.

1 Wat kan men verwachten van de Objectbenadering?

2 De basisconcepten van de objectbenadering

3 Diagrammen en weergave van objecten met behulp van UML

4 De grote principes van het objectontwerp

5 Hoe kan men objectsoftware benaderen?

UML klasse diagrammen vertalen naar programmeertalen en databases.
Implementatieprincipes van objectapplicaties. Het belang van de
distributie. Algemene client-servermodellen.
De grote platformen van vandaag: de .NET-technologieën van Microsoft
en JEE van SUN.
Vergelijking van hun sterke en zwakke punten.
Het belang van de distributie. Klassenbibliotheken. Talen voor het
programmeren en gebruiken van componenten.

Het probleem van de levenscyclus van software.
Ontwikkelings- en onderhoudsproblemen vereisen een softwareaanpak
die evolutie mogelijk maakt.
De frameworks- en componentenbenadering, die gebaseerd is op de
Object-gedachte, is een antwoord op deze noodzaak.
Hoe kan men snel apps ontwerpen en realiseren op basis van frameworks
en herbruikbare componenten?
Hoe kan men softwarecomponenten integreren in een bestaand
framework? Hoe kan men frameworks maken?
Een bestaande applicatie kunnen nemen om deze om te vormen tot
framework en zodoende evolutief te maken.
Grote klassen van frameworks. De huidige componentmodellen.

Hoe kan men de ervaring hergebruiken bij het ontwerpen en ontwikkelen
van objectapplicaties?
Design Patterns of "ontwerppatronen" als softwareoplossingen
voortvloeiend uit terugkerende algemene problemen.
De verschillende soorten Design Patterns. Voorbeeld van Design Patterns.
Voordelen en beperkingen van Design Patterns.
Hoe kan men Design Patterns praktisch gebruiken? Leren om Design
Patronen te implementeren door de praktijk.

6 Van ontwerp tot implementatie

7 Aanpak met frameworks en componenten

8 Design patterns

	Opleiding : Ontwerp oriented object
	Praktijkcursus - 4d - 28u00 - Ref. COB Prijs : 2100 € V.B.
	1 Wat kan men verwachten van de Objectbenadering?
	2 De basisconcepten van de objectbenadering
	3 Diagrammen en weergave van objecten met behulp van UML
	4 De grote principes van het objectontwerp
	5 Hoe kan men objectsoftware benaderen?
	6 Van ontwerp tot implementatie
	7 Aanpak met frameworks en componenten
	8 Design patterns

