@orsys;

YEARS

Opleiding : Ontwerp oriented
object

Ingineering objectsoftware

Praktijkcursus - 4d - 28u00 - Ref. COB
Prijs: 2100 € V.B.

Hoe kan men het object oriented ontwerp aanpakken? Hoe kan men overgaan
van een functionele benadering naar een objectbenadering? Hoe kan men object
oriented programma schrijven met echte schaalbaarheid en herbruikbaarheid?
Deze cursus biedt u een conceptuele en praktische beheersing van het
objectontwerp.

@ Pedagogische doelstellingen

Aan het einde van de trainingis de deelnemer in staat om:

De principes en specifieke eigenschappen van objectontwerp
begrijpen.

Omschakelen van een functionele naar een objectbenadering.
Modelleren van objectsoftware met behulp van UML-notatie.
Vertalen van het UML-model naar objecttaal.

De benaderingen beschrijven met frameworks en componenten.
Leren hoe men de Design Patronen kan implementeren.

Doelgroep
Ontwikkelaars, projectleiders die zich willen opleiden in objectgeoriénteerd
ontwerp.

Voorafgaande vereisten
Basiskennis van applicatieontwerp en softwareontwikkeling.

Praktische modaliteiten

Praktisch werk

De behandelde punten zullen worden geillustreerd met tal van oefeningen die
speciaal zijn gekozen om de principes en bijzonderheden van het objectontwerp
te benadrukken, van deinitiéle analyse tot deimplementatie in een objecttaal.

Opleidingsprogramma

DEELNEMERS
Ontwikkelaars, projectleiders die zich
willen opleiden in objectgeoriénteerd

ontwerp.

VOORAFGAANDE VEREISTEN
Basiskennis van applicatieontwerp en

softwareontwikkeling.

VAARDIGHEDEN VAN DE
CURSUSLEIDER

De deskundigen die de cursus leiden
zijn specialisten op het betreffende
vakgebied. Zij werden geselecteerd
door onze pedagogische teams zowel
om hun vakkennis als hun
pedagogische vaardigheden voor elke
cursus die zij geven. Zij hebben
minstens vijf tot tien jaar ervaringin
hun vakgebied en oefenen of
oefenden verantwoordelijke

bedrijfsfuncties uit.

BEOORDELINGSMODALITEITEN

De cursusleider beoordeelt de
pedagogische vooruitgang van de
deelnemer gedurende de gehele
cursus aan de hand van
meerkeuzevragen, praktijksituaties,
praktische opdrachten, ...

De deelnemer legt ook van tevoren en
naderhand een test af ter bevestiging

van de verworven kennis.

@ Wat kan men verwachten van de Objectbenadering?

e Waarom objecttechnologieén gebruiken?

e Deuitdagingen van de nieuwe informatica: modulariteit (plug-ins),
herbruikbaarheid, schaalbaarheid.

e Het gebruik van componentenbibliotheken. Hoe beantwoordt de Object-
aanpak aan deze uitdagingen?
Hoe kan men een Object-probleem aanpakken?
Kennis uit andere vakgebieden van de informatica en andere disciplines.

@ De basisconcepten van de objectbenadering

e Deobjecten: dualiteit procedure/gegeven.

e Klassen als structuurmodellen en gedrag van objecten, instanties als
vertegenwoordigers van klassen.

e Degedefinieerde methoden en procedures in de klassen en gebruikt door
deinstanties.

e [Interacties tussen objecten door het verzenden van berichten. Hoe worden
berichten geinterpreteerd door de objecten?

e Deerfenis. Erfenis en typering van variabelen in sterk getypeerde talen
(C++, Java).

@ Diagrammen en weergave van objecten met behulp van UML

e Debelangrijkste diagrammen (klassendiagrammen,
sequentiediagrammen) en hun gebruik voor het objectontwerp.

e Deinstrumenten voor het beoordelen en weergeven van objecten:
toepassing van een modelsysteem van de markt.

@ De grote principes van het objectontwerp

e Wat kan men in de vorm van een object zetten? Principe van reificatie.

e Criteriadie moeten worden toegepast om te beslissen wat in de vorm van
een Object moet worden gezet. De te vermijden fouten.

e Hoe kan men een objectsoftware structureren? Principe van modulariteit
enontleding van domeinen.

e Hoe kan men een geheel aan klassen structureren? Abstractie- en
classificatiebeginsel.

e Hoe kan men de interactie tussen objecten bedenken? Principe van
inkapseling en autonomie.

o Complexe communicatiesystemen analyseren. De algemene aanpak. De te
vermijden fouten.

e Toetepassencriteriaom over "goede" klassenhiérarchieén te beschikken.
Detevermijden fouten.

@ Hoe kan men objectsoftware benaderen?

e Deontwikkelingsprincipes. Van spiraalvormige ontwikkeling tot
incrementele ontwikkeling.

e |dentificatie van de entiteiten van het domein en beschrijving van de
interacties. Hergebruik en schaalbaarheid van programma's.
Objectontwerp betekent niet het gebruik van een objecttool!
Detevermijden fouten.

PEDAGOGISCHE EN TECHNISCHE
MIDDELEN

e De gebruikte pedagogische
middelen en cursusmethoden zijn
voornamelijk: audiovisuele
hulpmiddelen, documentatie en
cursusmateriaal, praktische
oefeningen en correcties van de
oefeningen voor praktijkstages,
casestudies of reéle voorbeelden
voor de seminars.

e Na afloop van de stages of seminars
verstrekt ORSYS de deelnemers een
evaluatievragenlijst over de cursus
die vervolgens door onze
pedagogische teams wordt
geanalyseerd.

e Na afloop van de cursus wordt een
presentielijst per halve dag verstrekt,
evenals een verklaring van de
afronding van de cursus indien de
stagiair alle sessies heeft bijgewoond.

TOEGANGSMODALITEITEN EN
TERMIJNEN

De inschrijving dient 24 uur voor
aanvang van de cursus

plaatsgevonden te hebben.

TOEGANKELIJKHEID VOOR
MINDERVALIDEN

Is voor u speciale toegankelijkheid
vereist? Neem contact op met mevr.
FOSSE, contactpersoon voor
mindervaliden, via het adres psh-
accueil@ORSYS.fr om uw verzoek en
de haalbaarheid daarvan zo goed

mogelijk te bestuderen.

@ Van ontwerp tot implementatie

UML klasse diagrammen vertalen naar programmeertalen en databases.
Implementatieprincipes van objectapplicaties. Het belang van de
distributie. Algemene client-servermodellen.

De grote platformen van vandaag: de .NET-technologieén van Microsoft
en JEE van SUN.

Vergelijking van hun sterke en zwakke punten.

Het belang van de distributie. Klassenbibliotheken. Talen voor het
programmeren en gebruiken van componenten.

@ Aanpak met frameworks en componenten

e Het probleem van de levenscyclus van software.

Ontwikkelings- en onderhoudsproblemen vereisen een softwareaanpak
die evolutie mogelijk maakt.

De frameworks- en componentenbenadering, die gebaseerd is op de
Object-gedachte, is een antwoord op deze noodzaak.

Hoe kan men snel apps ontwerpen en realiseren op basis van frameworks
en herbruikbare componenten?

Hoe kan men softwarecomponenten integreren in een bestaand
framework? Hoe kan men frameworks maken?

Een bestaande applicatie kunnen nemen om deze om te vormen tot
framework en zodoende evolutief te maken.

Grote klassen van frameworks. De huidige componentmodellen.

‘ Design patterns

Hoe kan men de ervaring hergebruiken bij het ontwerpen en ontwikkelen
van objectapplicaties?

e Design Patterns of "ontwerppatronen" als softwareoplossingen
voortvloeiend uit terugkerende algemene problemen.

e Deverschillende soorten Design Patterns. Voorbeeld van Design Patterns.

e Voordelen en beperkingen van Design Patterns.

e Hoe kan men Design Patterns praktisch gebruiken? Leren om Design
Patronen teimplementeren door de praktijk.

	Opleiding : Ontwerp oriented object
	Praktijkcursus - 4d - 28u00 - Ref. COB Prijs : 2100 € V.B.
	1 Wat kan men verwachten van de Objectbenadering?
	2 De basisconcepten van de objectbenadering
	3 Diagrammen en weergave van objecten met behulp van UML
	4 De grote principes van het objectontwerp
	5 Hoe kan men objectsoftware benaderen?
	6 Van ontwerp tot implementatie
	7 Aanpak met frameworks en componenten
	8 Design patterns

