
DEELNEMERS

Voor OPCO Atlas leden:

ontwikkelaars, architecten.

VOORAFGAANDE VEREISTEN

Kennis van programmeertalen (Java,

C#, C++, JavaScript, Python, enz.).

VAARDIGHEDEN VAN DE

CURSUSLEIDER

De deskundigen die de cursus leiden

zijn specialisten op het betreffende

vakgebied. Zij werden geselecteerd

door onze pedagogische teams zowel

om hun vakkennis als hun

pedagogische vaardigheden voor elke

cursus die zij geven. Zij hebben

minstens vijf tot tien jaar ervaring in

hun vakgebied en oefenen of

oefenden verantwoordelijke

bedrijfsfuncties uit.

BEOORDELINGSMODALITEITEN

De cursusleider beoordeelt de

pedagogische vooruitgang van de

deelnemer gedurende de gehele

cursus aan de hand van

meerkeuzevragen, praktijksituaties,

praktische opdrachten, …

De deelnemer legt ook van tevoren en

naderhand een test af ter bevestiging

van de verworven kennis.

Opleiding : Kotlin
Multiplatform,
multiplatformapplicaties
ontwikkelen
Praktijkcursus - 3d - 21u00 - Ref. LKD
Prijs : 1650 € V.B.

Na afloop van de cursus zijn de deelnemers in staat om de ontwikkelings- en
onderhoudskosten aanzienlijk te verlagen, de time-to-market van hun
applicaties te versnellen en effectief te communiceren met native teams bij het
integreren van KMP-modules in bestaande projecten. Dit trainingsprogramma is
gericht op werknemers in professionele sectoren die onder de OPCO Atlas
vallen.

Pedagogische doelstellingen

De concepten van Kotlin Multiplateform begrijpen

Een ontwikkelomgeving opzetten

De architectuur van een multiplatform mobiele applicatie
ontwerpen
Een vloeiende, krachtige gebruikersinterface bouwen

Testen uitvoeren om de kwaliteit en betrouwbaarheid van
applicaties te garanderen

Aan het einde van de training is de deelnemer in staat om:

Doelgroep
Voor OPCO Atlas leden: ontwikkelaars, architecten.

Voorafgaande vereisten
Kennis van programmeertalen (Java, C#, C++, JavaScript, Python, enz.).

Praktische modaliteiten

Om het leerproces te optimaliseren, kunnen op verzoek van de deelnemer e-
learningmodules worden aangeboden voor en na de klassikale sessie of virtuele
les.

Leer methodes

PEDAGOGISCHE EN TECHNISCHE

MIDDELEN

• De gebruikte pedagogische

middelen en cursusmethoden zijn

voornamelijk: audiovisuele

hulpmiddelen, documentatie en

cursusmateriaal, praktische

oefeningen en correcties van de

oefeningen voor praktijkstages,

casestudies of reële voorbeelden

voor de seminars.

• Na afloop van de stages of seminars

verstrekt ORSYS de deelnemers een

evaluatievragenlijst over de cursus

die vervolgens door onze

pedagogische teams wordt

geanalyseerd.

• Na afloop van de cursus wordt een

presentielijst per halve dag verstrekt,

evenals een verklaring van de

afronding van de cursus indien de

stagiair alle sessies heeft bijgewoond.

TOEGANGSMODALITEITEN EN

TERMIJNEN

De inschrijving dient 24 uur voor

aanvang van de cursus

plaatsgevonden te hebben.

TOEGANKELIJKHEID VOOR

MINDERVALIDEN

Is voor u speciale toegankelijkheid

vereist? Neem contact op met mevr.

FOSSE, contactpersoon voor

mindervaliden, via het adres psh-

accueil@ORSYS.fr om uw verzoek en

de haalbaarheid daarvan zo goed

mogelijk te bestuderen.

Opleidingsprogramma

Inleiding tot algoritmen.
Basisinstructies in pseudocode.

Traditionele multiplatformontwikkelingsproblemen.
Evolutie van KMM naar KMP: geschiedenis en JetBrains visie.
Vergelijking met andere oplossingen (React Native, Flutter, Xamarin).
Use cases en succesverhalen (Netflix, VMware, Philips).

Gelaagde architectuur: gemeenschappelijk, Android, iOS, web.
Verwacht/werkelijk mechanisme: declaraties en implementaties.
Strategieën voor het delen van codes: wat wel en wat niet delen.

Systeemvereisten per platform (Windows, macOS, Linux).
Tools installeren: Android Studio, Xcode, KMP-plugins.
Gradle-configuratie en projectstructuur.

Een KMP project maken met de IntelliJ wizard.
Mapstructuur: commonMain, androidMain, iosMain.
Eerste gedeelde klasse en zijn specifieke implementaties.
Bouwen en uitvoeren op de verschillende platforms.

1 Algoritmen, redeneren vóór ontwerpen - Vooropleiding digitale

leerinhoud

Digitale activiteiten
Deze e-learningcursus leert je na te denken voordat je een programma
ontwerpt door je kennis te laten maken met de basisprincipes van
algoritmiek. Deelnemers bestuderen met name de fundamentele instructies
in pseudocode.

2 Inleiding tot Kotlin Multiplatform

Praktisch werk
Groepsbrainstormen : Wat zijn de huidige uitdagingen in mobiele
ontwikkeling? Vergelijkende analyse van multiplatformoplossingen in
subgroepen.

3 Architectuur en fundamentele concepten

Praktisch werk
Creatie van de eerste eenvoudige expect/actual statements.

4 Configuratie van de omgeving

Praktisch werk
Begeleide installatie op werkstations met collectieve verificatie.

5 Eerste KMP-project

Praktisch werk
Ontwikkeling in tweetallen: maken van een "Hallo KMP" app met weergave
van het huidige platform. Presentatie van projecten en feedback.

Gemeenschappelijke versus specifieke afhankelijkheden.
ecosysteem van KMP-bibliotheek: kotlinx, Ktor, SQLDelight.
Geavanceerde Gradle-configuratie voor sourceSets.

Organisatie van pakketten en modules.
Aanbevolen patronen: Repository, UseCase, ViewModel.
Platformoverkoepelende foutafhandeling met verzegelde klassen.

Schone architectuur voor gebruik op meerdere platforms.
Implementatie van het Repository patroon met gemeenschappelijke
interfaces.
ViewModels gedeeld met StateFlow en coroutines.
Afhankelijkheidsinjectie met Koin.

HTTP-client met Ktor: configuratie en gebruik.
JSON serialisatie met kotlinx.serialization.
Lokale opslag met SQLDelight: installatie en query's.
Cache- en synchronisatiestrategieën.

StateFlow en SharedFlow: concepten en verschillen.
UI-statusbeheer: Laden, Succes, Fout.
Combinatie van stroming en ritssluiting.

6 Beheer van afhankelijkheden

Praktisch werk
Algemene afhankelijkheden toevoegen en testen (kotlinx-coroutines, kotlinx-
serialisatie).

7 Patronen en best practices

Praktisch werk
Refactoring van het eerder gemaakte project volgens de patronen die in de
subgroepen zijn gepresenteerd

8 MVVM-architectuur en Repository-ontwerppatroon

Praktisch werk
Ontwikkeling van een gebruikersmanager met een compleet Repository
Design Pattern.

9 Gegevensbeheer en API's

Praktisch werk
Creatie van een REST API-client voor het ophalen van weergegevens. -
Implementatie van lokale caching met SQLDelight.

10 Statusbeheer en reactiesnelheid

Praktisch werk
Implementatie van een algemene statusmanager voor de weerapplicatie.

Inleiding tot Compose Multiplatform: basisconcepten.
UI-componenten: Tekst, Knop, LazyColumn, Kaart.
Thema's en Material Design-beheer.
Navigeer tussen schermen met Compose Navigation.
Reactiviteit met collectAsState.

Android-integratie: de gedeelde module gebruiken.
iOS-integratie: Swift/Kotlin framework en bridge.
Gegevensoverdracht tussen native en gedeelde lagen.

Specifieke API's: geolocatie, camera, meldingen.
Abstractie strategieën voor systeem-API's.
Prestaties en optimalisatie per platform.

Gedeelde eenheidstests : CommonTest en specifiek.
Mocken met MockK in een multiplatformcontext.
ViewModels en Repositories testen.
Integratietests met databases en API's.

Tests samenstellen met ComposeTestRule.
Gebruikersinteractietests en toestandsverificatie.
Navigatie- en gebruikersflowtests.
Teststrategieën voor eigen onderdelen.

11 Gebruikersinterfaces met Compose Multiplatform

Praktisch werk
De interface van de weerapplicatie gemaakt met Compose. Navigatie tussen
lijst- en detailschermen geïmplementeerd.

12 Native integratie

Praktisch werk
Integratie van KMP ViewModels in Android-activiteiten en iOS
ViewControllers.

13 Beheer van specifieke platforms

Praktisch werk
Geolocatie toegevoegd aan de weer-app, met specifieke implementaties.

14 KMP teststrategie

Praktisch werk
Het schrijven van unit tests voor de componenten die de afgelopen dagen zijn
ontwikkeld.

15 Gebruikersinterface testen

Praktisch werk
UI-tests maken voor de schermen van de weerapplicatie.

GitHub Acties configuratie voor KMP.
Geautomatiseerde build voor Android (APK/AAB) en iOS (IPA).
Implementatie in winkels: Play Store, App Store.
Beheer van certificaten en handtekeningen.

Productcatalogus met zoekfunctie en filters.
Persistent winkelmandje.
Gebruikersauthenticatie.
Responsieve interface en vloeiende navigatie.
Unit- en integratietesten.

KMP-ecosysteem: nieuwe bibliotheken en ontwikkelingen.
Gemeenschap en bronnen: documentatie, forums, conferenties.
Bedrijfsadoptiestrategieën: geleidelijke migratie, teamtraining.
KMP Stappenplan: Multiplatform web, desktop, wasm samenstellen.

Kennismaking met Kotlin.
De grondbeginselen van Kotlin.
De functies.
Coroutines.
Objectgeoriënteerd programmeren.
Android-ontwikkeling.
Moederlijke ontwikkeling.
JavaScript-ontwikkeling.
Server-side ontwikkeling.

16 Uitrol en CI/CD

Praktisch werk
Een basis CI/CD pijplijn configureren met GitHub Actions.

17 Eindproject - E-commercetoepassing

Praktisch werk
Architecture et planification du projet. Développement des fonctionnalités
core. Tests et finalisations.

18 Perspectieven en "verder gaan"

Workshop storytelling
Ontwikkeling van een persoonlijk actieplan voor elke deelnemer.

19 Kotlin, de essentiële basis - Post-training digitale leerinhoud

Digitale activiteiten
Deze online cursus behandelt de Kotlin-taal, de grondbeginselen, de
verschillende functies, het begrip coroutine, objectgeoriënteerd
programmeren met een demonstratie van de ontwikkeling van een
toepassing in Android Studio, hoe Kotlin te gebruiken voor native of server-
side ontwikkeling en hoe Kotlin JavaScript-code kan genereren.

Data en plaats

KLAS OP AFSTAND
2026 : 10 maa., 19 mei, 6 okt., 8 dec.

PARIS LA DÉFENSE
2026 : 5 mei, 29 sep., 1 dec.

LILLE

2026 : 10 maa., 19 mei, 6 okt., 8 dec.

	Opleiding : Kotlin Multiplatform, multiplatformapplicaties ontwikkelen
	Praktijkcursus - 3d - 21u00 - Ref. LKD Prijs : 1650 € V.B.
	1 Algoritmen, redeneren vóór ontwerpen - Vooropleiding digitale leerinhoud
	2 Inleiding tot Kotlin Multiplatform
	3 Architectuur en fundamentele concepten
	4 Configuratie van de omgeving
	5 Eerste KMP-project
	6 Beheer van afhankelijkheden
	7 Patronen en best practices
	8 MVVM-architectuur en Repository-ontwerppatroon
	9 Gegevensbeheer en API's
	10 Statusbeheer en reactiesnelheid
	11 Gebruikersinterfaces met Compose Multiplatform
	12 Native integratie
	13 Beheer van specifieke platforms
	14 KMP teststrategie
	15 Gebruikersinterface testen
	16 Uitrol en CI/CD
	17 Eindproject - E-commercetoepassing
	18 Perspectieven en "verder gaan"
	19 Kotlin, de essentiële basis - Post-training digitale leerinhoud

