
PARTICIPANTS

Pour les adhérents à l'OPCO Atlas :

développeurs, ingénieurs, chefs de

projet proches du développement.

PRÉREQUIS

Connaître les principes de la

programmation orientée objet (POO)

et disposer d’une expérience d’un

langage de programmation…

COMPÉTENCES DU FORMATEUR

Les experts qui animent la formation

sont des spécialistes des matières

abordées. Ils ont été validés par nos

équipes pédagogiques tant sur le plan

des connaissances métiers que sur

celui de la pédagogie, et ce pour

chaque cours qu’ils enseignent. Ils ont

au minimum cinq à dix années

d’expérience dans leur domaine et

occupent ou ont occupé des postes à

responsabilité en entreprise.

MODALITÉS D’ÉVALUATION

Le formateur évalue la progression

pédagogique du participant tout au

long de la formation au moyen de

QCM, mises en situation, travaux

pratiques…

Le participant complète également un

test de positionnement en amont et

en aval pour valider les compétences

acquises.

Formation : Campus Atlas -
C++, Programmation Objet
Cours pratique - 5j - 35h00 - Réf. CGE
Prix : 2610 € H.T.

À l’issue de la formation, le participant sera capable de mettre en œuvre les
principes fondamentaux de la conception orientée objet et de concevoir des
applications en C++. Ce programme de formation est destiné aux salariés des
branches professionnelles relevant de l'OPCO Atlas.

Objectifs pédagogiques

Comprendre la syntaxe et les concepts fondamentaux du C++

Maîtriser les ajouts majeurs des normes C++

Appliquer les principes de la conception orientée objet

Écrire des programmes simples en appliquant les bonnes pratiques
de développement
Utiliser les structures de contrôle et les types de données en C++

Manipuler les fichiers et la mémoire de manière basique

À l’issue de la formation, le participant sera en mesure de :

Public concerné
Pour les adhérents à l'OPCO Atlas : développeurs, ingénieurs, chefs de projet
proches du développement.

Prérequis
Connaître les principes de la programmation orientée objet (POO) et disposer
d’une expérience d’un langage de programmation…

Méthodes et moyens pédagogiques

Des études de cas et exercices pratiques.

70% pratique – 30% théorie. Pour optimiser le parcours d’apprentissage, des
modules e-learning peuvent être fournis avant et après la session présentielle ou
la classe virtuelle, sur simple demande du participant.

Travaux pratiques

Méthodes pédagogiques

Modalités d'évaluation

MOYENS PÉDAGOGIQUES ET

TECHNIQUES

• Les moyens pédagogiques et les

méthodes d’enseignement utilisés

sont principalement : aides

audiovisuelles, documentation et

support de cours, exercices pratiques

d’application et corrigés des

exercices pour les formations

pratiques, études de cas ou

présentation de cas réels pour les

séminaires de formation.

• À l’issue de chaque formation ou

séminaire, ORSYS fournit aux

participants un questionnaire

d’évaluation du cours qui est ensuite

analysé par nos équipes

pédagogiques.

• Une feuille d’émargement par demi-

journée de présence est fournie en fin

de formation ainsi qu’une attestation

de fin de formation si le participant a

bien assisté à la totalité de la session.

MODALITÉS ET DÉLAIS D’ACCÈS

L’inscription doit être finalisée 24

heures avant le début de la formation.

ACCESSIBILITÉ AUX PERSONNES

HANDICAPÉES

Pour toute question ou besoin relatif

à l’accessibilité, vous pouvez joindre

notre équipe PSH par e-mail à

l’adresse psh-accueil@orsys.fr.

Modalités d'évaluation
Le formateur évalue la progression pédagogique du participant tout au long de la
formation au moyen de QCM, mises en situation, travaux pratiques…

Le participant complète également un test de positionnement en amont et en
aval pour valider les compétences acquises.

Programme de la formation

Introduction.
Les classes.
L'héritage.

Présentation du langage C++ et de ses évolutions.
Installation des outils (compilateur, IDE, gestionnaire de projet).
Structure d’un programme C++.
Compilation, exécution, gestion des fichiers source.

Tableaux statiques et dynamiques.
Chaînes de caractères (C et C++).
Entrées/sorties standard et fichiers.

Classes et objets.
Encapsulation, abstraction.
Constructeurs, destructeurs.
Membres statiques et d’instance.

1 Java, apprendre la programmation orientée objet - Contenu digital

learning préformation

Activités digitales
La programmation orientée objet (POO) est un paradigme présent
aujourd’hui dans l’ensemble des langages de programmation modernes. Ces
concepts permettent de produire un code efficace, puissant et facile à
maintenir. Cette formation en ligne présente les concepts clés de la
programmation orientée objet comme la notion de classe et d'héritage.

2 Rappel sur le fonctionnement du C++

Travaux pratiques
Installation et configuration de l’environnement. Structure et syntaxe de
base. Exercices de contrôle de flux.

3 Tableaux, chaînes et gestion des données

Travaux pratiques
Manipulation de données. Exercices sur les structures de données.
Optimisation et bonnes pratiques.

4 Programmation orientée objet

Travaux pratiques
Création de classes simples. Héritage et polymorphisme. Cas d’usage
avancés.

Tests unitaires avec frameworks C++ (Catch2, GoogleTest).
Techniques d’optimisation des performances.
Stratégies de gestion mémoire.

Allocation dynamique (new, delete).
Pointeurs, références, pointeurs intelligents (smart pointers).
Fuites de mémoire, gestion des ressources (RAII).
Bonnes pratiques de gestion mémoire.

Présentation de la STL et de ses avantages.
Conteneurs principaux : vector, list, map, set.
Itérateurs et parcours de collections.
Algorithmes standards (sort, find, etc.).

Patterns de conception classiques (Singleton, Factory, Observer, etc.).
Utilisation des templates pour les patterns génériques.
Bonnes pratiques de conception orientée objet.

Tests unitaires avancés (mocks, tests paramétrés).
Optimisation des performances (profiling, analyse de code).
Stratégies de refactoring.

5 Testing et optimisation

Travaux pratiques
Tests unitaires avancés. Optimisation des performances. Déploiement
optimisé.

6 Gestion de la mémoire en C++

Travaux pratiques
Manipulation de la mémoire. Atelier RAII et gestion des ressources.
Optimisation mémoire.

7 Introduction à la STL (Standard Template Library)

Travaux pratiques
Manipulation des conteneurs STL. Exercices sur les algorithmes STL.
Optimisation et bonnes pratiques STL.

8 Patterns avancés et conception

Travaux pratiques
Implémentation de patterns. Patterns avancés et templates. Cas d’usage et
revue de code.

9 Testing avancé et optimisation

Travaux pratiques
Tests avancés. Optimisation et refactoring. Déploiement et synthèse.

Templates de fonctions et de classes.
Spécialisation et surcharge de templates.
Templates variadiques et métaprogrammation de base.
Bonnes pratiques et pièges à éviter.

Gestion des exceptions (try, catch, throw).
Exceptions personnalisées.
Bonnes pratiques de gestion d’erreurs.
Impact sur la performance et la lisibilité.

Organisation d’un projet multifichiers.
Utilisation de CMake ou d’autres outils de build.
Gestion des dépendances et modularité.
Documentation et tests automatisés.

Tests unitaires et d’intégration avancés.
Introduction à l’intégration continue (CI/CD).
Outils de build et de test automatisés.
Synthèse des acquis de la journée.

Lambda expressions, auto, nullptr, move semantics.
Boucles for-range, initialisation uniforme.
Smart pointers avancés, gestion des ressources.
Fonctions anonymes et closures.

10 Programmation générique et templates

Travaux pratiques
Création de templates. Métaprogrammation et templates avancés.
Optimisation et bonnes pratiques.

11 Gestion des exceptions et robustesse

Travaux pratiques
Manipulation des exceptions. Exercices sur la robustesse. Bonnes pratiques
et revue de code.

12 Intégration de projets complexes

Travaux pratiques
Structuration d’un projet. Intégration et gestion des dépendances. Cas
d’usage et revue de projet.

13 Testing, CI/CD et synthèse

Travaux pratiques
Mise en place de tests automatisés. CI/CD et automatisation. Synthèse et
plan d’action.

14 Programmation avancée en C++

Travaux pratiques
Exercices sur les nouveautés du langage. Ateliers sur la modernisation du
code. Optimisation avancée.

Sécurité mémoire (buffer overflow, use-after-free).
Bonnes pratiques de validation des entrées.
Gestion des accès concurrents (mutex, threads).
Outils d’analyse de sécurité.

Introduction au multithreading en C++.
Utilisation des threads, futures, promises.
Synchronisation et gestion des ressources partagées.
Outils de profiling et d’analyse de performance.

Tests de performance et de charge.
Outils de monitoring (Valgrind, perf, etc.).
Analyse des logs et détection d’anomalies.
Synthèse des acquis de la journée.

Analyse d’un cahier des charges.
Conception orientée objet et modulaire.
Développement d’une application C++ complète.
Intégration des tests, optimisation et documentation.

Bonnes pratiques de développement C++.
Gestion des erreurs et exceptions.
Documentation technique et utilisateur.
Planification de la maintenance et de l’évolution.

15 Sécurité et robustesse en C++

Travaux pratiques
Analyse de vulnérabilités. Exercices sur la concurrence. Bonnes pratiques et
revue de code.

16 Performance et multithreading

Travaux pratiques
Mise en œuvre du multithreading. Optimisation de la concurrence. Cas
d’usage et revue de code.

17 Testing, monitoring et synthèse

Travaux pratiques
Tests de performance. Monitoring et analyse. Synthèse et plan d’action.

18 Projet de synthèse

Travaux pratiques
Réalisation du projet. Soutenance et retours.

19 Consolidation des bonnes pratiques

Travaux pratiques
Revue de code croisée. Atelier documentation et maintenance. Synthèse et
bonnes pratiques.

Définition d’objectifs personnels.
Identification des ressources et outils pour progresser.
Planification de la mise en pratique.
Évaluation à chaud et feedback.

Notions fondamentales.
Diagrammes structurels.
Diagrammes comportementaux.

20 Plan d’action personnel et clôture

Travaux pratiques
Élaboration du plan d’action personnel. Évaluation et feedback. Clôture et
perspectives.

21 UML, apprendre à modéliser avec les diagrammes - Contenu digital

learning post-formation

Activités digitales
Cette formation en ligne présente les fondamentaux de la conception
orientée objet, les différents diagrammes UML, structurels et
comportementaux, ainsi que leurs objectifs et leurs usages. À travers un
exemple de conception fil rouge, l'application UML pour spécifier, visualiser
et documenter efficacement un système informatique sera mise en pratique.

Dates et lieux

CLASSE À DISTANCE
2026 : 30 mars, 22 juin, 5 oct., 14 déc.

PARIS LA DÉFENSE
2026 : 23 mars, 15 juin, 28 sep., 7 déc.

METZ
2026 : 22 juin, 14 déc.

NANCY
2026 : 22 juin, 14 déc.

	Formation : Campus Atlas - C++, Programmation Objet
	Cours pratique - 5j - 35h00 - Réf. CGE Prix : 2610 € H.T.
	1 Java, apprendre la programmation orientée objet - Contenu digital learning préformation
	2 Rappel sur le fonctionnement du C++
	3 Tableaux, chaînes et gestion des données
	4 Programmation orientée objet
	5 Testing et optimisation
	6 Gestion de la mémoire en C++
	7 Introduction à la STL (Standard Template Library)
	8 Patterns avancés et conception
	9 Testing avancé et optimisation
	10 Programmation générique et templates
	11 Gestion des exceptions et robustesse
	12 Intégration de projets complexes
	13 Testing, CI/CD et synthèse
	14 Programmation avancée en C++
	15 Sécurité et robustesse en C++
	16 Performance et multithreading
	17 Testing, monitoring et synthèse
	18 Projet de synthèse
	19 Consolidation des bonnes pratiques
	20 Plan d’action personnel et clôture
	21 UML, apprendre à modéliser avec les diagrammes - Contenu digital learning post-formation

