
PARTICIPANTS

Pour les adhérents à l'OPCO Atlas :

développeurs, architectes.

PRÉREQUIS

Avoir des connaissances en langage

de programmation (Java, C#, C++,

JavaScript, Python, etc.).

COMPÉTENCES DU FORMATEUR

Les experts qui animent la formation

sont des spécialistes des matières

abordées. Ils ont été validés par nos

équipes pédagogiques tant sur le plan

des connaissances métiers que sur

celui de la pédagogie, et ce pour

chaque cours qu’ils enseignent. Ils ont

au minimum cinq à dix années

d’expérience dans leur domaine et

occupent ou ont occupé des postes à

responsabilité en entreprise.

MODALITÉS D’ÉVALUATION

Le formateur évalue la progression

pédagogique du participant tout au

long de la formation au moyen de

QCM, mises en situation, travaux

pratiques…

Le participant complète également un

test de positionnement en amont et

en aval pour valider les compétences

acquises.

Formation : Campus Atlas -
Kotlin Multiplatform,
développer des applications
multiplateformes
Cours pratique - 3j - 21h00 - Réf. LKD
Prix : 1650 € H.T.

À l'issue de cette formation, les participants seront en mesure de réduire
significativement les coûts de développement et de maintenance, d'accélérer le
time-to-market de leurs applications, et de dialoguer efficacement avec les
équipes natives lors de l'intégration des modules KMP dans les projets existants.
Ce programme de formation est destiné aux salariés des branches
professionnelles relevant de l'OPCO Atlas.

Objectifs pédagogiques

Connaître les concepts de Kotlin Multiplateform

Mettre en place un environnement de développement

Concevoir l'architecture d'une application mobile multiplateforme

Construire une interface utilisateur fluide et performante

Réaliser des tests pour assurer la qualité et la fiabilité des
applications

À l’issue de la formation, le participant sera en mesure de :

Public concerné
Pour les adhérents à l'OPCO Atlas : développeurs, architectes.

Prérequis
Avoir des connaissances en langage de programmation (Java, C#, C++,
JavaScript, Python, etc.).

Méthodes et moyens pédagogiques

Pour optimiser le parcours d’apprentissage, des modules e-learning peuvent être
fournis avant et après la session présentielle ou la classe virtuelle, sur simple
demande du participant.

Méthodes pédagogiques

MOYENS PÉDAGOGIQUES ET

TECHNIQUES

• Les moyens pédagogiques et les

méthodes d’enseignement utilisés

sont principalement : aides

audiovisuelles, documentation et

support de cours, exercices pratiques

d’application et corrigés des

exercices pour les formations

pratiques, études de cas ou

présentation de cas réels pour les

séminaires de formation.

• À l’issue de chaque formation ou

séminaire, ORSYS fournit aux

participants un questionnaire

d’évaluation du cours qui est ensuite

analysé par nos équipes

pédagogiques.

• Une feuille d’émargement par demi-

journée de présence est fournie en fin

de formation ainsi qu’une attestation

de fin de formation si le participant a

bien assisté à la totalité de la session.

MODALITÉS ET DÉLAIS D’ACCÈS

L’inscription doit être finalisée 24

heures avant le début de la formation.

ACCESSIBILITÉ AUX PERSONNES

HANDICAPÉES

Pour toute question ou besoin relatif

à l’accessibilité, vous pouvez joindre

notre équipe PSH par e-mail à

l’adresse psh-accueil@orsys.fr.

Modalités d'évaluation
Le formateur évalue la progression pédagogique du participant tout au long de la
formation au moyen de QCM, mises en situation, travaux pratiques…

Le participant complète également un test de positionnement en amont et en
aval pour valider les compétences acquises.

Programme de la formation

Introduction à l’algorithmique.
Les instructions de base en pseudo-code.

Problématiques du développement multiplateforme traditionnel.
Évolution de KMM vers KMP : historique et vision JetBrains.
Comparaison avec les autres solutions (React Native, Flutter, Xamarin).
Cas d'usage et success stories (Netflix, VMware, Philips).

Architecture en couches : Common, Android, iOS, web.
Mécanisme expect/actual : déclarations et implémentations.
Stratégies de partage de code : what to share versus what not to share.

Prérequis système par plateforme (Windows, macOS, Linux).
Installation des outils : Android Studio, Xcode, plugins KMP.
Configuration Gradle et structure de projet.

1 Algorithmique, raisonner avant de concevoir - Contenu digital learning

préformation

Activités digitales
Cette formation en ligne apprend à raisonner avant de concevoir un
programme en découvrant les bases de l’algorithmique. Les participants
étudieront notamment les instructions fondamentales en pseudo-code.

2 Introduction à Kotlin Multiplatform

Travaux pratiques
Brainstorming collectif : "Quels sont les défis actuels en développement
mobile ?". Analyse comparative des solutions multiplateformes en sous-
groupes.

3 Architecture et concepts fondamentaux

Travaux pratiques
Création de premières déclarations expect/actual simples.

4 Configuration de l'environnement

Travaux pratiques
Installation guidée sur les postes de travail avec vérification collective.

Création d'un projet KMP avec l'assistant IntelliJ.
Structure des dossiers : commonMain, androidMain, iosMain.
Première classe partagée et ses implémentations spécifiques.
Build et exécution sur les différentes plateformes.

Dépendances communes versus spécifiques.
Écosystème des librairies KMP : kotlinx, Ktor, SQLDelight.
Configuration Gradle avancée pour les sourceSets.

Organisation des packages et modules.
Patterns recommandés : Repository, UseCase, ViewModel.
Gestion d'erreurs multiplateforme avec classes scellées.

Clean Architecture adaptée au multiplateforme.
Implémentation du pattern Repository avec interfaces communes.
ViewModels partagés avec StateFlow et coroutines.
Injection de dépendances avec Koin.

Client HTTP avec Ktor : configuration et utilisation.
Sérialisation JSON avec kotlinx.serialization.
Stockage local avec SQLDelight : setup et requêtes.
Stratégies de cache et synchronisation.

5 Premier Projet KMP

Travaux pratiques
Développement en binômes : création d'une app "Hello KMP" avec affichage
de la plateforme courante. Présentation des réalisations et retours
d'expérience.

6 Gestion des dépendances

Travaux pratiques
Ajout et test de dépendances communes (kotlinx-coroutines, kotlinx-
serialization).

7 Patterns et bonnes pratiques

Travaux pratiques
Refactoring du projet créé précédemment selon les patterns présentés en
sous-groupes

8 Architecture MVVM et Repository Design Pattern

Travaux pratiques
Développement d'un gestionnaire d'utilisateurs avec Repository Design
Pattern complet.

9 Gestion des données et API

Travaux pratiques
Création d'un client API REST pour récupérer des données météo. -
Implémentation du cache local avec SQLDelight.

StateFlow et SharedFlow : concepts et différences.
Gestion des états d'UI : Loading, Success, Error.
Combinaison de flux avec combine et zip.

Introduction à Compose Multiplatform : concepts de base.
Composants UI : Text, Button, LazyColumn, Card.
Gestion des thèmes et du Material Design.
Navigation entre écrans avec Compose Navigation.
Réactivité avec collectAsState.

Intégration Android : utilisation du module shared.
Intégration iOS : framework et bridge Swift/Kotlin.
Passage de données entre couches native et partagée.

API spécifiques : géolocalisation, caméra, notifications.
Stratégies d'abstraction des API système.
Performance et optimisations par plateforme.

Tests unitaires partagés : CommonTest et spécifiques.
Mocking avec MockK dans un contexte multiplateforme.
Tests de ViewModels et Repositories.
Tests d'intégration avec bases de données et API.

10 Gestion d'état et réactivité

Travaux pratiques
Implémentation d'un gestionnaire d'état global pour l'application météo.

11 Interfaces utilisateur avec Compose Multiplatform

Travaux pratiques
Création de l'interface de l'application météo avec Compose. Implémentation
de la navigation entre écrans de liste et détail.

12 Intégration native

Travaux pratiques
Intégration des ViewModels KMP dans les activités Android et
ViewControllers iOS.

13 Gestion des plateformes spécifiques

Travaux pratiques
Ajout de la géolocalisation à l'app météo avec implémentations spécifiques.

14 Stratégie de tests KMP

Travaux pratiques
Écriture de tests unitaires pour les composants développés les jours
précédents.

Tests Compose avec ComposeTestRule.
Tests d'interaction utilisateur et vérification d'états.
Tests de navigation et de flux utilisateur.
Stratégies de tests pour les parties natives.

Configuration GitHub Actions pour KMP.
Build automatisé pour Android (APK/AAB) et iOS (IPA).
Déploiement sur stores : Play Store, App Store.
Gestion des certificats et signatures.

Catalogue de produits avec recherche et filtres.
Panier d'achat persistant.
Authentification utilisateur.
Interface responsive et navigation fluide.
Tests unitaires et d'intégration.

Écosystème KMP : nouvelles librairies et évolutions.
Communauté et ressources : documentation, forums, conférences.
Stratégies d'adoption en entreprise : migration progressive, formation
équipes.
Roadmap KMP : Compose Multiplatform Web, Desktop, Wasm.

15 Tests d'interface utilisateur

Travaux pratiques
Création de tests UI pour les écrans de l'application météo.

16 Déploiement et CI/CD

Travaux pratiques
Configuration d'un pipeline CI/CD basique avec GitHub Actions.

17 Projet Final - Application e-commerce

Travaux pratiques
Architecture et planification du projet. Développement des fonctionnalités
core. Tests et finalisations.

18 Perspectives et "aller plus loin"

Echanges
Élaboration d'un plan d'action personnalisé pour chaque participant.

Présentation de Kotlin.
Les fondamentaux de Kotlin.
Les fonctions.
Les coroutines.
La programmation orientée objet.
Le développement Android.
Le développement natif.
Le développement JavaScript.
Le développement côté serveur.

19 Kotlin, les bases indispensables - Contenu digital learning post-formation

Activités digitales
Cette formation en ligne présente le langage Kotlin, ses fondamentaux, ses
différentes fonctions, la notion de coroutine, la programmation orientée
objet avec une démonstration du développement d'une application sous
Android Studio, comment utiliser Kotlin pour du développement natif ou
côté serveur et comment Kotlin peut générer du code JavaScript.

Dates et lieux

CLASSE À DISTANCE
2026 : 10 mars, 19 mai, 6 oct., 8 déc.

PARIS LA DÉFENSE
2026 : 5 mai, 29 sep., 1 déc.

METZ
2026 : 19 mai, 6 oct.

NANCY
2026 : 10 mars, 6 oct.

	Formation : Campus Atlas - Kotlin Multiplatform, développer des applications multiplateformes
	Cours pratique - 3j - 21h00 - Réf. LKD Prix : 1650 € H.T.
	1 Algorithmique, raisonner avant de concevoir - Contenu digital learning préformation
	2 Introduction à Kotlin Multiplatform
	3 Architecture et concepts fondamentaux
	4 Configuration de l'environnement
	5 Premier Projet KMP
	6 Gestion des dépendances
	7 Patterns et bonnes pratiques
	8 Architecture MVVM et Repository Design Pattern
	9 Gestion des données et API
	10 Gestion d'état et réactivité
	11 Interfaces utilisateur avec Compose Multiplatform
	12 Intégration native
	13 Gestion des plateformes spécifiques
	14 Stratégie de tests KMP
	15 Tests d'interface utilisateur
	16 Déploiement et CI/CD
	17 Projet Final - Application e-commerce
	18 Perspectives et "aller plus loin"
	19 Kotlin, les bases indispensables - Contenu digital learning post-formation

