@orsys

Formation : Campus Atlas -
Kotlin Multiplatform,
développer des applications
multiplateformes

Cours pratique - 3j - 21h00 - Réf. LKD
Prix : 1650 € H.T.

NEW

Al'issue de cette formation, les participants seront en mesure de réduire
significativement les colits de développement et de maintenance, d'accélérer le
time-to-market de leurs applications, et de dialoguer efficacement avec les
équipes natives lors del'intégration des modules KMP dans les projets existants.
Ce programme de formation est destiné aux salariés des branches
professionnelles relevant de 'OPCO Atlas.

@’j Obijectifs pédagogiques
I'issue de laformation, le participant seraen mesure de :

A
@ Connaitreles concepts de Kotlin Multiplateform

@ Mettreen place un environnement de développement

@ Concevoir|'architecture d'une application mobile multiplateforme
@ Construireuneinterface utilisateur fluide et performante

o

Réaliser des tests pour assurer laqualité et lafiabilité des
applications

Public concerné
Pour les adhérents a 'OPCO Atlas : développeurs, architectes.

Prérequis
Avoir des connaissances en langage de programmation (Java, C#, C++,
JavaScript, Python, etc.).

Méthodes et moyens pédagogiques

Méthodes pédagogiques

Pour optimiser le parcours d’apprentissage, des modules e-learning peuvent étre
fournis avant et aprées la session présentielle ou la classe virtuelle, sur simple
demande du participant.

PARTICIPANTS
Pour les adhérents a I'OPCO Atlas :

développeurs, architectes.

PREREQUIS
Avoir des connaissances en langage
de programmation (Java, C#, C++,

JavaScript, Python, etc.).

COMPETENCES DU FORMATEUR
Les experts qui animent la formation
sont des spécialistes des matiéres
abordées. Ils ont été validés par nos
équipes pédagogiques tant sur le plan
des connaissances métiers que sur
celui de la pédagogie, et ce pour
chaque cours gu'ils enseignent. lls ont
au minimum cing a dix années
d’expérience dans leur domaine et
occupent ou ont occupé des postes a

responsabilité en entreprise.

MODALITES D’EVALUATION

Le formateur évalue la progression
pédagogique du participant tout au
long de la formation au moyen de
QCM, mises en situation, travaux
pratiques...

Le participant compléte également un
test de positionnement en amont et
en aval pour valider les compétences

acquises.

Modalités d'évaluation

Le formateur évalue |la progression pédagogique du participant tout au longdela
formation au moyen de QCM, mises en situation, travaux pratiques...

Le participant compléte également un test de positionnement en amont et en
aval pour valider les compétences acquises.

Programme de la formation

@ Algorithmique, raisonner avant de concevoir - Contenu digital learning

préformation

e Introductional’algorithmique.
e Lesinstructions de base en pseudo-code.

Activités digitales

Cetteformation en ligne apprend a raisonner avant de concevoir un
programme en découvrant les bases de I'algorithmique. Les participants
étudieront notamment les instructions fondamentales en pseudo-code.

@ Introduction a Kotlin Multiplatform

Problématiques du développement multiplateforme traditionnel.
Evolution de KMM vers KMP : historique et vision JetBrains.
Comparaison avec les autres solutions (React Native, Flutter, Xamarin).
Cas d'usage et success stories (Netflix, VMware, Philips).

Travaux pratiques

Brainstorming collectif : "Quels sont les défis actuels en développement
mobile ?". Analyse comparative des solutions multiplateformes en sous-
groupes.

@ Architecture et concepts fondamentaux

e Architecture en couches : Common, Android, iOS, web.
e Mécanisme expect/actual : déclarations et implémentations.
e Stratégies de partage de code: what to share versus what not to share.

Travaux pratiques
Création de premiéres déclarations expect/actual simples.

@ Configuration de I'environnement

e Prérequis systeme par plateforme (Windows, macOS, Linux).
e [nstallation des outils : Android Studio, Xcode, plugins KMP.
e Configuration Gradle et structure de projet.

Travaux pratiques
Installation guidée sur les postes de travail avec vérification collective.

MOYENS PEDAGOGIQUES ET
TECHNIQUES

e Les moyens pédagogiques et les
méthodes d’enseignement utilisés
sont principalement : aides
audiovisuelles, documentation et
support de cours, exercices pratiques
d’application et corrigés des
exercices pour les formations
pratiques, études de cas ou
présentation de cas réels pour les
séminaires de formation.

o A l'issue de chaque formation ou
séminaire, ORSYS fournit aux
participants un questionnaire
d’évaluation du cours qui est ensuite
analysé par nos équipes
pédagogiques.

e Une feuille d’émargement par demi-
journée de présence est fournie en fin
de formation ainsi qu’une attestation
de fin de formation si le participant a
bien assisté a la totalité de la session.

MODALITES ET DELAIS D’ACCES
L'inscription doit étre finalisée 24

heures avant le début de la formation.

ACCESSIBILITE AUX PERSONNES
HANDICAPEES

Pour toute question ou besoin relatif
al’accessibilité, vous pouvez joindre
notre équipe PSH par e-mail a

I'adresse psh-accueil@orsys.fr.

@ Premier Projet KMP

Création d'un projet KMP avecI'assistant IntelliJ.
Structure des dossiers : commonMain, androidMain, iosMain.
Premiére classe partagée et ses implémentations spécifiques.
Build et exécution sur les différentes plateformes.

Travaux pratiques

Développement en bindmes : création d'une app "Hello KMP" avec affichage

delaplateforme courante. Présentation des réalisations et retours
d'expérience.

@ Gestion des dépendances

e Dépendances communes versus spécifiques.

e Ecosystémedes librairies KMP : kotlinx, Ktor, SQLDelight.
e Configuration Gradle avancée pour les sourceSets.
Travaux pratiques

Ajout et test de dépendances communes (kotlinx-coroutines, kotlinx-
serialization).

@ Patterns et bonnes pratiques

e Organisation des packages et modules.
e Patterns recommandés : Repository, UseCase, ViewModel.
e Gestiond'erreurs multiplateforme avec classes scellées.

Travaux pratiques

Refactoring du projet créé précédemment selon les patterns présentés en
sous-groupes

Architecture MVVM et Repository Design Pattern

Clean Architecture adaptée au multiplateforme.

Implémentation du pattern Repository avec interfaces communes.
ViewModels partagés avec StateFlow et coroutines.

Injection de dépendances avec Koin.

Travaux pratiques

Développement d'un gestionnaire d'utilisateurs avec Repository Design
Pattern complet.

@ Gestion des données et API

Client HTTP avec Ktor : configuration et utilisation.
Sérialisation JSON avec kotlinx.serialization.
Stockage local avec SQLDelight : setup et requétes.
Stratégies de cache et synchronisation.

Travaux pratiques

Créationd'un client API REST pour récupérer des données météo. -
Implémentation du cache local avec SQLDelight.

Gestion d'état et réactivité

e StateFlow et SharedFlow : concepts et différences.
e Gestiondes états d'Ul : Loading, Success, Error.
e Combinaison de flux avec combine et zip.

Travaux pratiques
Implémentation d'un gestionnaire d'état global pour |'application météo.

@ Interfaces utilisateur avec Compose Multiplatform

Introduction a Compose Multiplatform : concepts de base.
Composants Ul : Text, Button, LazyColumn, Card.

Gestion des thémes et du Material Design.

Navigation entre écrans avec Compose Navigation.
Réactivité avec collectAsState.

Travaux pratiques

Créationdel'interface de I'application météo avec Compose. Implémentation
delanavigation entre écrans deliste et détail.

@ Intégration native

e [ntégration Android: utilisation du module shared.
e |ntégrationiOS : framework et bridge Swift/Kotlin.
e Passage de données entre couches native et partagée.

Travaux pratiques

Intégration des ViewModels KMP dans les activités Android et
ViewControllers iOS.

@ Gestion des plateformes spécifiques

e APl spécifiques : géolocalisation, caméra, notifications.
e Stratégies d'abstraction des APl systeme.
e Performance et optimisations par plateforme.

Travaux pratiques
Ajout de la géolocalisation al'app météo avecimplémentations spécifiques.

Stratégie de tests KMP

Tests unitaires partagés : CommonTest et spécifiques.
Mocking avec MockK dans un contexte multiplateforme.
Tests de ViewModels et Repositories.

Tests d'intégration avec bases de données et API.

Travaux pratiques

Ecriture de tests unitaires pour les composants développés les jours
précédents.

@ Tests d'interface utilisateur

Tests Compose avec ComposeTestRule.

Tests d'interaction utilisateur et vérification d'états.
Tests de navigation et de flux utilisateur.

Stratégies de tests pour les parties natives.

Travaux pratiques
Créationdetests Ul pour les écrans de |'application météo.

Déploiement et CI/CD

Configuration GitHub Actions pour KMP.

Build automatisé pour Android (APK/AAB) et iOS (IPA).
Déploiement sur stores : Play Store, App Store.

Gestion des certificats et signatures.

Travaux pratiques
Configuration d'un pipeline CI/CD basique avec GitHub Actions.

@ Projet Final - Application e-commerce

Catalogue de produits avec recherche et filtres.
Panier d'achat persistant.

Authentification utilisateur.

Interface responsive et navigation fluide.

Tests unitaires et d'intégration.

Travaux pratiques

Architecture et planification du projet. Développement des fonctionnalités
core. Tests et finalisations.

Perspectives et "aller plus loin"

Ecosystéme KMP : nouvelles librairies et évolutions.

Communauté et ressources : documentation, forums, conférences.
Stratégies d'adoption en entreprise : migration progressive, formation
équipes.

Roadmap KMP : Compose Multiplatform Web, Desktop, Wasm.

I§changes
Elaboration d'un plan d'action personnalisé pour chaque participant.

Kotlin, les bases indispensables - Contenu digital learning post-formation

Présentation de Kotlin.

Les fondamentaux de Kotlin.

Les fonctions.

Les coroutines.

La programmation orientée objet.
Le développement Android.

Le développement natif.

Le développement JavaScript.

Le développement coté serveur.

Activités digitales

Cetteformation enligne présente le langage Kotlin, ses fondamentaux, ses
différentes fonctions, la notion de coroutine, la programmation orientée
objet avec une démonstration du développement d'une application sous
Android Studio, comment utiliser Kotlin pour du développement natif ou
coté serveur et comment Kotlin peut générer du code JavaScript.

Dates et lieux

CLASSE A DISTANCE PARIS LA DEFENSE
2026: 10 mars, 19 mai, 6 oct., 8 déc. 2026: 5mai, 29 sep., 1 déc.
METZ NANCY

2026: 19 mai, 6 oct. 2026: 10 mars, 6 oct.

	Formation : Campus Atlas - Kotlin Multiplatform, développer des applications multiplateformes
	Cours pratique - 3j - 21h00 - Réf. LKD Prix : 1650 € H.T.
	1 Algorithmique, raisonner avant de concevoir - Contenu digital learning préformation
	2 Introduction à Kotlin Multiplatform
	3 Architecture et concepts fondamentaux
	4 Configuration de l'environnement
	5 Premier Projet KMP
	6 Gestion des dépendances
	7 Patterns et bonnes pratiques
	8 Architecture MVVM et Repository Design Pattern
	9 Gestion des données et API
	10 Gestion d'état et réactivité
	11 Interfaces utilisateur avec Compose Multiplatform
	12 Intégration native
	13 Gestion des plateformes spécifiques
	14 Stratégie de tests KMP
	15 Tests d'interface utilisateur
	16 Déploiement et CI/CD
	17 Projet Final - Application e-commerce
	18 Perspectives et "aller plus loin"
	19 Kotlin, les bases indispensables - Contenu digital learning post-formation

