@orsys

Formation : Campus Atlas -
Python, programmation Objet

Cours pratique - 5j - 35h00 - Réf. PYE
Prix : 2610 € H.T.

NEW

Al'issuedelaformation, le participant sera capable d’utiliser les principales
fonctionnalités du langage Python pour développer des applications
multiplateformes. Ce programme de formation est destiné aux salariés des
branches professionnelles relevant de I'OPCO Atlas.

@’j Obijectifs pédagogiques
I'issue de laformation, le participant seraen mesure de :

A
@ Comprendre les bases du langage Python et son écosysteme
@ Acqueérir les principes de la programmation objet

@ Comprendreet utiliser les fonctions et modules

@ Concevoir des interfaces graphiques

o

Utiliser les outils de test et d’évaluation de la qualité d’'un
programme Python

Public concerné
Pour les adhérents a 'OPCO Atlas : développeurs, ingénieurs, chefs de projet
proches du développement.

Prérequis
Avoir des connaissances de base en programmation (souhaitable en langage
objet).

Méthodes et moyens pédagogiques

Travaux pratiques

Exercices pratiques et/ou études de cas.

Méthodes pédagogiques

60% pratique - 40% théorie. Pour optimiser le parcours d’apprentissage, des

modules e-learning peuvent étre fournis avant et aprés la session présentielle ou

laclasse virtuelle, sur simple demande du participant.

PARTICIPANTS
Pour les adhérents a I'OPCO Atlas :
développeurs, ingénieurs, chefs de

projet proches du développement.

PREREQUIS
Avoir des connaissances de base en
programmation (souhaitable en

langage objet).

COMPETENCES DU FORMATEUR
Les experts qui animent la formation
sont des spécialistes des matiéres
abordées. Ils ont été validés par nos
équipes pédagogiques tant sur le plan
des connaissances métiers que sur
celui de la pédagogie, et ce pour
chaque cours gu'ils enseignent. lls ont
au minimum cing a dix années
d’expérience dans leur domaine et
occupent ou ont occupé des postes a

responsabilité en entreprise.

MODALITES D’EVALUATION

Le formateur évalue la progression
pédagogique du participant tout au
long de la formation au moyen de
QCM, mises en situation, travaux
pratiques...

Le participant compléte également un
test de positionnement en amont et
en aval pour valider les compétences

acquises.

Modalités d'évaluation

Le formateur évalue la progression pédagogique du participant tout au longdela
formation au moyen de QCM, mises en situation, travaux pratiques...

Le participant compléte également un test de positionnement en amont et en
aval pour valider les compétences acquises.

Programme de la formation

@ Algorithmique, raisonner avant de concevoir - Contenu digital learning

préformation

e |ntroductional’algorithmique.
e |esinstructions de base en pseudo-code.

Activités digitales

Cetteformation en ligne apprend a raisonner avant de concevoir un
programme en découvrant les bases de |'algorithmique. Les instructions
fondamentales en pseudo-code seront également abordées.

@ Introduction a Python

Installation et configuration de I’'environnement.
Types de données fondamentaux.

Structures de données de base.

Variables et portée.

Opérateurs et expressions.

Style et conventions Python (PEP 8).

Travaux pratiques
Setup de I'’environnement. Types et structures. Style et bonnes pratiques.

@ Structures de controle et fonctions

Structures de contréle avancées.
Définition et utilisation des fonctions.
Parameétres et retours multiples.
Gestion des erreurs et exceptions.
Modules et packages Python.

Bonnes pratiques de structuration.

Travaux pratiques
Structures de controle. Fonctions et modularité. Gestion des erreurs.

@ Approche orientée objet

Principes fondamentaux de la POO.
Classes et instances.

Héritage et composition.
Polymorphisme et abstraction.
Interfaces et classes abstraites.
Design patterns en Python.

Travaux pratiques
Introduction ala programmation orientée objet (POO). Création de classes.
Design patterns.

MOYENS PEDAGOGIQUES ET
TECHNIQUES

e Les moyens pédagogiques et les
méthodes d’enseignement utilisés
sont principalement : aides
audiovisuelles, documentation et
support de cours, exercices pratiques
d’application et corrigés des
exercices pour les formations
pratiques, études de cas ou
présentation de cas réels pour les
séminaires de formation.

o A l'issue de chaque formation ou
séminaire, ORSYS fournit aux
participants un questionnaire
d’évaluation du cours qui est ensuite
analysé par nos équipes
pédagogiques.

e Une feuille d’émargement par demi-
journée de présence est fournie en fin
de formation ainsi qu’une attestation
de fin de formation si le participant a
bien assisté a la totalité de la session.

MODALITES ET DELAIS D’ACCES
L'inscription doit étre finalisée 24

heures avant le début de la formation.

ACCESSIBILITE AUX PERSONNES
HANDICAPEES

Pour toute question ou besoin relatif
al’accessibilité, vous pouvez joindre
notre équipe PSH par e-mail a

I'adresse psh-accueil@orsys.fr.

@ Manipulation avancée des objets

Properties et descripteurs.
Méthodes magiques.
Métaclasses et décorateurs.
Introspection et réflexion.
Gestion delamémoire.
Bonnes pratiques POO.

Travaux pratiques
Properties et descripteurs. Méthodes spéciales. Métaprogrammation.

@ POO Avancée

Méthodes spéciales Python approfondies.

Héritage multiple et résolution d’ordre de méthodes (MRO).
Context managers et protocoles Python.

Design patterns avancés.

Mixins et composition.

Anti-patterns et piéges courants.

Travaux pratiques
Méthodes spéciales avancées. Héritage et composition. Design patterns
avances.

@ Gestion d’erreurs avancée

Hiérarchie compléte des exceptions.
Création d’exceptions personnalisées.
Logging avancé et configuration.
Debugging et troubleshooting.
Gestion des erreurs asynchrones.
Bonnes pratiques de robustesse.

Travaux pratiques
Exceptions personnalisées. Logging avancé. Debugging et tests.

Utilisation de la StdLib

Arguments et options en ligne de commande (argparse).
Expressions régulieres (re).

Manipulation du systéme de fichiers (os, pathlib).
Modules importants (datetime, collections, itertools).
Bases de données avec sqlite3.

Travaux pratiques
Manipulation de fichiers. Expressions réguliéres. Base de données SQLite.

@ Bibliothéque standard Python

Modules sys et os pour I'interaction systéme.
Manipulation avancée de fichiers avec pathlib.
Collections spécialisées (collections, heapq).
Expressions réguliéres avecre.

Sérialisation avec pickle et json.

Concurrence avec threading et multiprocessing.

Travaux pratiques
Manipulation systeme. Collections avancées. RegEx et sérialisation.

Outils et utilitaires CLI

Arguments et options avec argparse.
Configuration avec configparser.
Loggingen CLI.

Interfaces consoleriches.
Automation systéme.

Distribution d’outils CLI.

Travaux pratiques
Parsing d’arguments. Interface utilisateur. Packaging et distribution.

@ Tests et Documentation

Tests unitaires avec unittest et pytest.

Test Driven Development (TDD).
Documentation avec docstrings et type hints.
Génération de documentation avec Sphinx.
Mesure de couverture de code.

Intégration continue.

Travaux pratiques
Tests unitaires. Documentation. Couverture et ClI.

@ Qualité du Code

Outils d’analyse statique (pylint, flake8).
Conventions de style (PEP 8).
Techniques de refactoring.

Revue de code et pair programming.
Mesures de complexité.
Automatisation des contréles.

Travaux pratiques
Analyse statique. Refactoring. Revue de code.

@ Interfaces graphiques avec Tkinter

Introduction a Tkinter et ses alternatives.
Widgets fondamentaux et layouts.
Gestion des événements.

Pattern MVC en GUI.

Styles et themes.

Bonnes pratiques d’interface.

Travaux pratiques
Fondamentaux Tkinter. Widgets avancés. Architecture MVC.

Interface avancée et tests GUI

Widgets personnalisés.
Styles et themes avancés.
Animation et effets visuels.
Tests d’'interfaces graphiques.
Accessibilité.
Internationalisation.

Travaux pratiques
Widgets custom. Tests GUI. Internationalisation.

@ Interfacage avec C

Introduction a ctypes et ses alternatives.
Types de données C et leur mapping.
Appel de fonctions C depuis Python.
Gestion de lamémoire et pointeurs.
Worapping de bibliothéques C.
Performance et debugging.

Travaux pratiques
Introduction a ctypes. Appels de fonctions. Performance et debug.

Optimisation avec Cython

Introduction a Cython et son écosystéme.
Syntaxe et types statiques Cython.
Compilation et build process.
Optimisation de code Python existant.
Intégration avec C/C++.

Profiling et benchmarking.

Travaux pratiques
Fondamentaux Cython. Optimisation. Integration C/C++

@ Profilage et performance

Outils de profilage (cProfile, line_profiler).
Analyse de performance CPU et mémoire.
Optimisation algorithmique.
Benchmarking et métriques.

Memory leaks et garbage collection.
Monitoring en production.

Travaux pratiques
Profilage CPU. Mémoire et GC. Benchmarking.

Meilleures pratiques d’optimisation

Patterns d’optimisation Python.
Architectures performantes.
Monitoring et observability.
Déploiement optimisé.

Scalabilité horizontale et verticale.
Tests decharge et stress.

Travaux pratiques
Architecture performante. Tests de charge. Monitoring production.

Lancement du projet de synthése

Présentation des sujets de projet.
Méthodologie de développement.
Organisation des équipes.
Planning et milestones.
Architecture et design.

Standards de qualité.

Travaux pratiques
Initialisation projet. Architecture. Setup projet.

Développement - Phase 1

Mise en placedelastructure de base.
Implémentation des features core.
Tests unitaires et documentation.
Git workflow et collaboration.
Codereview et qualité.

Suivi d’avancement.

Travaux pratiques
Corefeatures. Git workflow. Point d’avancement.

@ Développement - Phase 2

Finalisation des fonctionnalités.
Tests d'intégration.
Documentation utilisateur.
Préparation du déploiement.
Optimisation et refactoring.
Préparation de ladémo.

Travaux pratiques
Features avancées. Documentation. Préparation démo.

@ Soutenance et bilan

Présentations des projets.
Démonstrations techniques.
Retours d’expérience.
Evaluation des acquis.
Discussion perspectives.
Feedback formation.

Travaux pratiques
Présentations. Revue technique. Perspectives. Cloture de la formation.

@ Python 3, les fondamentaux du langage - Contenu digital learning post-
formation

Introduction.

Types de données.
Algorithmique.
Manipulation de données.

Activités digitales

Cette formation en ligne présente les bases essentielles du langage Python
pour apprendre a programmer efficacement. Les participants étudieront la
structure d’un programme, les types de données, les fonctions et les notions
d’algorithmique, avant d’aborder la manipulation de données et la
programmation orientée objet. L'utilisation d'une base de données avec
SQLAIchemy et I'application des bonnes pratiques pour développer du code
Python propre et maintenable seront également abordées.

Python 3, concepts avancés - Contenu digital learning post-formation

Modéle objet.

Objets typés.

Tests.

XML.

Génération de document.

Activités digitales

Cette formation en ligne présente le modéle objet de Python et les objets
typés, un des axes de développement moderne de Python. Les participants
seront alors capables de construire des applications performantes et
modernes et de sécuriser le traitement des données. lIs seront amenés a
découvrir les meilleures pratiques pour tester leur code et ainsi assurer leur
qualité. lls verront également quelques recettes pour manipuler du XML avec

Python, puis pour générer des documents PDF, openDocument ou encore des
images.

Dates et lieux

CLASSE A DISTANCE PARIS LA DEFENSE
2026: 9 mars, 1juin, 14 sep., 23 nov. 2026: 18 mai, 7 sep., 16 nov.
METZ NANCY

2026: 1juin, 23 nov. 2026: 9 mars, 14 sep.

	Formation : Campus Atlas - Python, programmation Objet
	Cours pratique - 5j - 35h00 - Réf. PYE Prix : 2610 € H.T.
	1 Algorithmique, raisonner avant de concevoir - Contenu digital learning préformation
	2 Introduction à Python
	3 Structures de contrôle et fonctions
	4 Approche orientée objet
	5 Manipulation avancée des objets
	6 POO Avancée
	7 Gestion d’erreurs avancée
	8 Utilisation de la StdLib
	9 Bibliothèque standard Python
	10 Outils et utilitaires CLI
	11 Tests et Documentation
	12 Qualité du Code
	13 Interfaces graphiques avec Tkinter
	14 Interface avancée et tests GUI
	15 Interfaçage avec C
	16 Optimisation avec Cython
	17 Profilage et performance
	18 Meilleures pratiques d’optimisation
	19 Lancement du projet de synthèse
	20 Développement - Phase 1
	21 Développement - Phase 2
	22 Soutenance et bilan
	23 Python 3, les fondamentaux du langage - Contenu digital learning post-formation
	24 Python 3, concepts avancés - Contenu digital learning post-formation

