
PARTICIPANTS

Pour les adhérents à l'OPCO Atlas :

développeurs, ingénieurs, chefs de

projet proches du développement.

PRÉREQUIS

Avoir des connaissances de base en

programmation (souhaitable en

langage objet).

COMPÉTENCES DU FORMATEUR

Les experts qui animent la formation

sont des spécialistes des matières

abordées. Ils ont été validés par nos

équipes pédagogiques tant sur le plan

des connaissances métiers que sur

celui de la pédagogie, et ce pour

chaque cours qu’ils enseignent. Ils ont

au minimum cinq à dix années

d’expérience dans leur domaine et

occupent ou ont occupé des postes à

responsabilité en entreprise.

MODALITÉS D’ÉVALUATION

Le formateur évalue la progression

pédagogique du participant tout au

long de la formation au moyen de

QCM, mises en situation, travaux

pratiques…

Le participant complète également un

test de positionnement en amont et

en aval pour valider les compétences

acquises.

Formation : Campus Atlas -
Python, programmation Objet
Cours pratique - 5j - 35h00 - Réf. PYE
Prix : 2610 € H.T.

À l’issue de la formation, le participant sera capable d’utiliser les principales
fonctionnalités du langage Python pour développer des applications
multiplateformes. Ce programme de formation est destiné aux salariés des
branches professionnelles relevant de l'OPCO Atlas.

Objectifs pédagogiques

Comprendre les bases du langage Python et son écosystème

Acquérir les principes de la programmation objet

Comprendre et utiliser les fonctions et modules

Concevoir des interfaces graphiques

Utiliser les outils de test et d’évaluation de la qualité d’un
programme Python

À l’issue de la formation, le participant sera en mesure de :

Public concerné
Pour les adhérents à l'OPCO Atlas : développeurs, ingénieurs, chefs de projet
proches du développement.

Prérequis
Avoir des connaissances de base en programmation (souhaitable en langage
objet).

Méthodes et moyens pédagogiques

Exercices pratiques et/ou études de cas.

60% pratique – 40% théorie. Pour optimiser le parcours d’apprentissage, des
modules e-learning peuvent être fournis avant et après la session présentielle ou
la classe virtuelle, sur simple demande du participant.

Travaux pratiques

Méthodes pédagogiques

Modalités d'évaluation

MOYENS PÉDAGOGIQUES ET

TECHNIQUES

• Les moyens pédagogiques et les

méthodes d’enseignement utilisés

sont principalement : aides

audiovisuelles, documentation et

support de cours, exercices pratiques

d’application et corrigés des

exercices pour les formations

pratiques, études de cas ou

présentation de cas réels pour les

séminaires de formation.

• À l’issue de chaque formation ou

séminaire, ORSYS fournit aux

participants un questionnaire

d’évaluation du cours qui est ensuite

analysé par nos équipes

pédagogiques.

• Une feuille d’émargement par demi-

journée de présence est fournie en fin

de formation ainsi qu’une attestation

de fin de formation si le participant a

bien assisté à la totalité de la session.

MODALITÉS ET DÉLAIS D’ACCÈS

L’inscription doit être finalisée 24

heures avant le début de la formation.

ACCESSIBILITÉ AUX PERSONNES

HANDICAPÉES

Pour toute question ou besoin relatif

à l’accessibilité, vous pouvez joindre

notre équipe PSH par e-mail à

l’adresse psh-accueil@orsys.fr.

Modalités d'évaluation
Le formateur évalue la progression pédagogique du participant tout au long de la
formation au moyen de QCM, mises en situation, travaux pratiques…

Le participant complète également un test de positionnement en amont et en
aval pour valider les compétences acquises.

Programme de la formation

Introduction à l’algorithmique.
Les instructions de base en pseudo-code.

Installation et configuration de l’environnement.
Types de données fondamentaux.
Structures de données de base.
Variables et portée.
Opérateurs et expressions.
Style et conventions Python (PEP 8).

Structures de contrôle avancées.
Définition et utilisation des fonctions.
Paramètres et retours multiples.
Gestion des erreurs et exceptions.
Modules et packages Python.
Bonnes pratiques de structuration.

Principes fondamentaux de la POO.
Classes et instances.
Héritage et composition.
Polymorphisme et abstraction.
Interfaces et classes abstraites.
Design patterns en Python.

1 Algorithmique, raisonner avant de concevoir - Contenu digital learning

préformation

Activités digitales
Cette formation en ligne apprend à raisonner avant de concevoir un
programme en découvrant les bases de l’algorithmique. Les instructions
fondamentales en pseudo-code seront également abordées.

2 Introduction à Python

Travaux pratiques
Setup de l’environnement. Types et structures. Style et bonnes pratiques.

3 Structures de contrôle et fonctions

Travaux pratiques
Structures de contrôle. Fonctions et modularité. Gestion des erreurs.

4 Approche orientée objet

Travaux pratiques
Introduction à la programmation orientée objet (POO). Création de classes.
Design patterns.

Properties et descripteurs.
Méthodes magiques.
Métaclasses et décorateurs.
Introspection et réflexion.
Gestion de la mémoire.
Bonnes pratiques POO.

Méthodes spéciales Python approfondies.
Héritage multiple et résolution d’ordre de méthodes (MRO).
Context managers et protocoles Python.
Design patterns avancés.
Mixins et composition.
Anti-patterns et pièges courants.

Hiérarchie complète des exceptions.
Création d’exceptions personnalisées.
Logging avancé et configuration.
Debugging et troubleshooting.
Gestion des erreurs asynchrones.
Bonnes pratiques de robustesse.

Arguments et options en ligne de commande (argparse).
Expressions régulières (re).
Manipulation du système de fichiers (os, pathlib).
Modules importants (datetime, collections, itertools).
Bases de données avec sqlite3.

Modules sys et os pour l’interaction système.
Manipulation avancée de fichiers avec pathlib.
Collections spécialisées (collections, heapq).
Expressions régulières avec re.
Sérialisation avec pickle et json.
Concurrence avec threading et multiprocessing.

5 Manipulation avancée des objets

Travaux pratiques
Properties et descripteurs. Méthodes spéciales. Métaprogrammation.

6 POO Avancée

Travaux pratiques
Méthodes spéciales avancées. Héritage et composition. Design patterns
avancés.

7 Gestion d’erreurs avancée

Travaux pratiques
Exceptions personnalisées. Logging avancé. Debugging et tests.

8 Utilisation de la StdLib

Travaux pratiques
Manipulation de fichiers. Expressions régulières. Base de données SQLite.

9 Bibliothèque standard Python

Travaux pratiques
Manipulation système. Collections avancées. RegEx et sérialisation.

Arguments et options avec argparse.
Configuration avec configparser.
Logging en CLI.
Interfaces console riches.
Automation système.
Distribution d’outils CLI.

Tests unitaires avec unittest et pytest.
Test Driven Development (TDD).
Documentation avec docstrings et type hints.
Génération de documentation avec Sphinx.
Mesure de couverture de code.
Intégration continue.

Outils d’analyse statique (pylint, flake8).
Conventions de style (PEP 8).
Techniques de refactoring.
Revue de code et pair programming.
Mesures de complexité.
Automatisation des contrôles.

Introduction à Tkinter et ses alternatives.
Widgets fondamentaux et layouts.
Gestion des événements.
Pattern MVC en GUI.
Styles et thèmes.
Bonnes pratiques d’interface.

10 Outils et utilitaires CLI

Travaux pratiques
Parsing d’arguments. Interface utilisateur. Packaging et distribution.

11 Tests et Documentation

Travaux pratiques
Tests unitaires. Documentation. Couverture et CI.

12 Qualité du Code

Travaux pratiques
Analyse statique. Refactoring. Revue de code.

13 Interfaces graphiques avec Tkinter

Travaux pratiques
Fondamentaux Tkinter. Widgets avancés. Architecture MVC.

Widgets personnalisés.
Styles et thèmes avancés.
Animation et effets visuels.
Tests d’interfaces graphiques.
Accessibilité.
Internationalisation.

Introduction à ctypes et ses alternatives.
Types de données C et leur mapping.
Appel de fonctions C depuis Python.
Gestion de la mémoire et pointeurs.
Wrapping de bibliothèques C.
Performance et debugging.

Introduction à Cython et son écosystème.
Syntaxe et types statiques Cython.
Compilation et build process.
Optimisation de code Python existant.
Intégration avec C/C++.
Profiling et benchmarking.

Outils de profilage (cProfile, line_profiler).
Analyse de performance CPU et mémoire.
Optimisation algorithmique.
Benchmarking et métriques.
Memory leaks et garbage collection.
Monitoring en production.

Patterns d’optimisation Python.
Architectures performantes.
Monitoring et observability.
Déploiement optimisé.
Scalabilité horizontale et verticale.
Tests de charge et stress.

14 Interface avancée et tests GUI

Travaux pratiques
Widgets custom. Tests GUI. Internationalisation.

15 Interfaçage avec C

Travaux pratiques
Introduction à ctypes. Appels de fonctions. Performance et debug.

16 Optimisation avec Cython

Travaux pratiques
Fondamentaux Cython. Optimisation. Integration C/C++

17 Profilage et performance

Travaux pratiques
Profilage CPU. Mémoire et GC. Benchmarking.

18 Meilleures pratiques d’optimisation

Travaux pratiques
Architecture performante. Tests de charge. Monitoring production.

Présentation des sujets de projet.
Méthodologie de développement.
Organisation des équipes.
Planning et milestones.
Architecture et design.
Standards de qualité.

Mise en place de la structure de base.
Implémentation des features core.
Tests unitaires et documentation.
Git workflow et collaboration.
Code review et qualité.
Suivi d’avancement.

Finalisation des fonctionnalités.
Tests d’intégration.
Documentation utilisateur.
Préparation du déploiement.
Optimisation et refactoring.
Préparation de la démo.

Présentations des projets.
Démonstrations techniques.
Retours d’expérience.
Évaluation des acquis.
Discussion perspectives.
Feedback formation.

19 Lancement du projet de synthèse

Travaux pratiques
Initialisation projet. Architecture. Setup projet.

20 Développement - Phase 1

Travaux pratiques
Core features. Git workflow. Point d’avancement.

21 Développement - Phase 2

Travaux pratiques
Features avancées. Documentation. Préparation démo.

22 Soutenance et bilan

Travaux pratiques
Présentations. Revue technique. Perspectives. Clôture de la formation.

Introduction.
Types de données.
Algorithmique.
Manipulation de données.

Modèle objet.
Objets typés.
Tests.
XML.
Génération de document.

23 Python 3, les fondamentaux du langage - Contenu digital learning post-

formation

Activités digitales
Cette formation en ligne présente les bases essentielles du langage Python
pour apprendre à programmer efficacement. Les participants étudieront la
structure d’un programme, les types de données, les fonctions et les notions
d’algorithmique, avant d’aborder la manipulation de données et la
programmation orientée objet. L'utilisation d'une base de données avec
SQLAlchemy et l'application des bonnes pratiques pour développer du code
Python propre et maintenable seront également abordées.

24 Python 3, concepts avancés - Contenu digital learning post-formation

Activités digitales
Cette formation en ligne présente le modèle objet de Python et les objets
typés, un des axes de développement moderne de Python. Les participants
seront alors capables de construire des applications performantes et
modernes et de sécuriser le traitement des données. Ils seront amenés à
découvrir les meilleures pratiques pour tester leur code et ainsi assurer leur
qualité. Ils verront également quelques recettes pour manipuler du XML avec
Python, puis pour générer des documents PDF, openDocument ou encore des
images.

Dates et lieux

CLASSE À DISTANCE
2026 : 9 mars, 1 juin, 14 sep., 23 nov.

PARIS LA DÉFENSE
2026 : 18 mai, 7 sep., 16 nov.

METZ
2026 : 1 juin, 23 nov.

NANCY
2026 : 9 mars, 14 sep.

	Formation : Campus Atlas - Python, programmation Objet
	Cours pratique - 5j - 35h00 - Réf. PYE Prix : 2610 € H.T.
	1 Algorithmique, raisonner avant de concevoir - Contenu digital learning préformation
	2 Introduction à Python
	3 Structures de contrôle et fonctions
	4 Approche orientée objet
	5 Manipulation avancée des objets
	6 POO Avancée
	7 Gestion d’erreurs avancée
	8 Utilisation de la StdLib
	9 Bibliothèque standard Python
	10 Outils et utilitaires CLI
	11 Tests et Documentation
	12 Qualité du Code
	13 Interfaces graphiques avec Tkinter
	14 Interface avancée et tests GUI
	15 Interfaçage avec C
	16 Optimisation avec Cython
	17 Profilage et performance
	18 Meilleures pratiques d’optimisation
	19 Lancement du projet de synthèse
	20 Développement - Phase 1
	21 Développement - Phase 2
	22 Soutenance et bilan
	23 Python 3, les fondamentaux du langage - Contenu digital learning post-formation
	24 Python 3, concepts avancés - Contenu digital learning post-formation

