@orsys:

YEARS

Course : C++, Object
programming

Practical course - 5d - 35h00 - Ref. CGE
Price: 3070 CHFE.T.

NEW

On completion of the course, participants will be able to apply the fundamental
principles of object-oriented design and design applications in C++. This training
program is intended for employees of professional branches covered by the
OPCOAtlas.

@’j Teaching objectives
At the end of the training, the participant will be able to:

Understand the syntax and fundamental concepts of C++
Master the major additions to the C++ standards

Apply the principles of object-oriented design

Write simple programs using good development practices
Using control structures and data types in C++
Basicfileand memory handling

Intended audience

For OPCO Atlas members: developers, engineers, project managers with close
links to development.

Prerequisites
Familiarity with the principles of object-oriented programming (OOP) and
experience of a programming language...

Practical details

Hands-on work
Casesstudies and practical exercises.

Teaching methods

70% pratique - 30% théorie. Pour optimiser le parcours d’apprentissage, des
modules e-learning peuvent étre fournis avant et aprés la session présentielle ou
la classe virtuelle, sur simple demande du participant.

Course schedule

PARTICIPANTS

For OPCO Atlas members:
developers, engineers, project
managers with close links to

development.

PREREQUISITES

Familiarity with the principles of
object-oriented programming (OOP)
and experience of a programming

language...

TRAINER QUALIFICATIONS

The experts leading the training are
specialists in the covered subjects.
They have been approved by our
instructional teams for both their
professional knowledge and their
teaching ability, for each course they
teach. They have at least five to ten
years of experience in their field and
hold (or have held) decision-making

positions in companies.

ASSESSMENT TERMS

The trainer evaluates each
participant’s academic progress
throughout the training using
multiple choice, scenarios, hands-on
work and more.

Participants also complete a
placement test before and after the
course to measure the skills they've

developed.

@ Java, learning object-oriented programming - Pre-training digital learning
content

e [ntroduction.
o (Classes.
e |nheritance.

Digital activities

Object-oriented programming (OOP) is a paradigm now present in all modern
programming languages. These concepts enable the production of efficient,
powerful and easy-to-maintain code. This online training course introduces
the key concepts of object-oriented programming, such as the notion of class
and inheritance.

@ A reminder of how C++ works

Presentation of the C++language and its evolutions.
Install tools (compiler, IDE, project manager).
Structure of a C++ program.

Compilation, execution, source file management.

Hands-on work

Installation et configuration de I’environnement. Structure et syntaxe de
base. Exercices de controéle de flux.

@ Tables, strings and data management

e Staticand dynamictables.
e Characterstrings (Cand C+4).
e Standard /O andfiles.

Hands-on work
Manipulation de données. Exercices sur les structures de données.
Optimisation et bonnes pratiques.

@ Object-oriented programming

Classes and objects.
Encapsulation, abstraction.
Builders, destroyers.

Static and instance members.

Hands-on work
Création de classes simples. Héritage et polymorphisme. Cas d’usage
avanceés.

@ Testing and optimization

e Unit testing with C++frameworks (Catch2, GoogleTest).
e Performance optimization techniques.
e Memory management strategies.

Hands-on work

Tests unitaires avancés. Optimisation des performances. Déploiement
optimisé.

TEACHING AIDS AND TECHNICAL
RESOURCES

e The main teaching aids and
instructional methods used in the
training are audiovisual aids,
documentation and course material,
hands-on application exercises and
corrected exercises for practical
training courses, case studies and
coverage of real cases for training
seminars.

o At the end of each course or
seminar, ORSYS provides
participants with a course evaluation
questionnaire that is analysed by our
instructional teams.

e A check-in sheet for each half-day
of attendance is provided at the end
of the training, along with a course
completion certificate if the trainee
attended the entire session.

TERMS AND DEADLINES
Registration must be completed 24

hours before the start of the training.

ACCESSIBILITY FOR PEOPLE WITH
DISABILITIES

Do you need special accessibility
accommodations? Contact Mrs.
Fosse, Disability Manager, at psh-
accueil@orsys.fr to review your

request and its feasibility.

@ Memory management in C++

Dynamicallocation (new, delete).

Pointers, references, smart pointers.
Memory leaks, resource management (RAII).
Good memory management practices.

Hands-on work

Manipulation de la mémoire. Atelier RAll et gestion des ressources.
Optimisation mémoire.

@ Introduction to STL (Standard Template Library)

Introducing the STL and its benefits.
Main containers: vector, list, map, set.
Iterators and collection paths.
Standard algorithms (sort, find, etc.).

Hands-on work

Manipulation des conteneurs STL. Exercices sur les algorithmes STL.
Optimisation et bonnes pratiques STL.

Advanced patterns and design

e Classicdesign patterns (Singleton, Factory, Observer, etc.).
e Usingtemplates for generic patterns.
e Best practicesin object-oriented design.

Hands-on work

Implémentation de patterns. Patterns avancés et templates. Cas d’'usage et
revue de code.

@ Advanced testing and optimization

e Advanced unit testing (mocks, parameterized tests).
e Performance optimization (profiling, code analysis).
e Refactoringstrategies.

Hands-on work
Tests avancés. Optimisation et refactoring. Déploiement et synthese.

Generic programming and templates

Function and class templates.

Specialization and template overload.

Variadic templates and basic metaprogramming.
Best practices and pitfalls to avoid.

Hands-on work

Créationdetemplates. Métaprogrammation et templates avancés.
Optimisation et bonnes pratiques.

@ Exception handling and robustness

Exception handling (try, catch, throw).
Customized exceptions.

Best practices in error management.
Impact on performance and legibility.

Hands-on work

Manipulation des exceptions. Exercices sur la robustesse. Bonnes pratiques
et revuede code.

@ Integration of complex projects

Organization of a multi-file project.

Use of CMake or other build tools.
Dependency management and modularity.
Automated documentation and testing.

Hands-on work

Structuration d’'un projet. Intégration et gestion des dépendances. Cas
d’usage et revue de projet.

@ Testing, CI/CD and synthesis

Advanced unit and integration testing.
Introduction to continuous integration (CI/CD).
Automated build and test tools.

Synthesis of the day's findings.

Hands-on work

Mise en place de tests automatisés. Cl/CD et automatisation. Synthése et
pland’action.

Advanced programmingin C++

Lambda expressions, auto, nullptr, move semantics.
For-range loops, uniform initialization.

Advanced smart pointers, resource management.
Anonymous functions and closures.

Hands-on work

Exercices sur les nouveautés du langage. Ateliers sur lamodernisation du
code. Optimisation avancée.

@ Safety and robustness in C++

Memory security (buffer overflow, use-after-free).
Best practices for input validation.

Concurrent access management (mutex, threads).
Security analysis tools.

Hands-on work

Analyse de vulnérabilités. Exercices sur la concurrence. Bonnes pratiques et
revue de code.

Performance and multithreading

Introduction to multithreadingin C++.

Use of threads, futures, promises.

Synchronization and management of shared resources.
Profiling and performance analysis tools.

Hands-on work

Mise en ceuvre du multithreading. Optimisation de la concurrence. Cas
d’'usage et revue de code.

@ Testing, monitoring and synthesis

Performance and load testing.
Monitoring tools (Valgrind, perf, etc.).
Log analysis and anomaly detection.
Synthesis of the day's findings.

Hands-on work
Tests de performance. Monitoring et analyse. Synthése et plan d’action.

Summary project

Analysis of specifications.

Modular, object-oriented design.

Development of acomplete C++ application.

Test integration, optimization and documentation.

Hands-on work
Réalisation du projet. Soutenance et retours.

Consolidating best practices

Good development practices C++.
Error and exception handling.
Technical and user documentation.
Maintenance and evolution planning.

Hands-on work

Revue de code croisée. Atelier documentation et maintenance. Synthése et
bonnes pratiques.

Personal action plan and closing

Setting personal goals.

Identify resources and tools for progress.
Planning for practical use.
On-the-spot evaluation and feedback.

Hands-on work

Elaboration du plan d’action personnel. Evaluation et feedback. Cloture et
perspectives.

@ UML, learning to model with diagrams - Post-training digital learning
content

e Fundamental concepts.
e Structural diagrams.
e Behavioral diagrams.

Digital activities
This online training course presents the fundamentals of object-oriented
design, the various UML structural and behavioral diagrams, as well as their

objectives and uses. An example of an object-oriented design will be used to

put into practice the application of UML to efficiently specify, visualize and
document acomputer system.

Dates and locations

REMOTE CLASS
2026:30Mar., 22 June, 5 Oct., 14 Dec.

	Course : C++, Object programming
	Practical course - 5d - 35h00 - Ref. CGE Price : 3070 CHF E.T.
	1 Java, learning object-oriented programming - Pre-training digital learning content
	2 A reminder of how C++ works
	3 Tables, strings and data management
	4 Object-oriented programming
	5 Testing and optimization
	6 Memory management in C++
	7 Introduction to STL (Standard Template Library)
	8 Advanced patterns and design
	9 Advanced testing and optimization
	10 Generic programming and templates
	11 Exception handling and robustness
	12 Integration of complex projects
	13 Testing, CI/CD and synthesis
	14 Advanced programming in C++
	15 Safety and robustness in C++
	16 Performance and multithreading
	17 Testing, monitoring and synthesis
	18 Summary project
	19 Consolidating best practices
	20 Personal action plan and closing
	21 UML, learning to model with diagrams - Post-training digital learning content

