
PARTICIPANTS

For OPCO Atlas members:

developers, engineers, project

managers with close links to

development.

PREREQUISITES

Familiarity with the principles of

object-oriented programming (OOP)

and experience of a programming

language...

TRAINER QUALIFICATIONS

The experts leading the training are

specialists in the covered subjects.

They have been approved by our

instructional teams for both their

professional knowledge and their

teaching ability, for each course they

teach. They have at least five to ten

years of experience in their field and

hold (or have held) decision-making

positions in companies.

ASSESSMENT TERMS

The trainer evaluates each

participant’s academic progress

throughout the training using

multiple choice, scenarios, hands-on

work and more.

Participants also complete a

placement test before and after the

course to measure the skills they’ve

developed.

Course : C++, Object
programming
Practical course - 5d - 35h00 - Ref. CGE
Price : 3070 CHF E.T.

On completion of the course, participants will be able to apply the fundamental
principles of object-oriented design and design applications in C++. This training
program is intended for employees of professional branches covered by the
OPCO Atlas.

Teaching objectives

Understand the syntax and fundamental concepts of C++

Master the major additions to the C++ standards

Apply the principles of object-oriented design

Write simple programs using good development practices

Using control structures and data types in C++

Basic file and memory handling

At the end of the training, the participant will be able to:

Intended audience
For OPCO Atlas members: developers, engineers, project managers with close
links to development.

Prerequisites
Familiarity with the principles of object-oriented programming (OOP) and
experience of a programming language...

Practical details

Case studies and practical exercises.

70% pratique – 30% théorie. Pour optimiser le parcours d’apprentissage, des
modules e-learning peuvent être fournis avant et après la session présentielle ou
la classe virtuelle, sur simple demande du participant.

Hands-on work

Teaching methods

Course schedule

TEACHING AIDS AND TECHNICAL

RESOURCES

• The main teaching aids and

instructional methods used in the

training are audiovisual aids,

documentation and course material,

hands-on application exercises and

corrected exercises for practical

training courses, case studies and

coverage of real cases for training

seminars.

• At the end of each course or

seminar, ORSYS provides

participants with a course evaluation

questionnaire that is analysed by our

instructional teams.

• A check-in sheet for each half-day

of attendance is provided at the end

of the training, along with a course

completion certificate if the trainee

attended the entire session.

TERMS AND DEADLINES

Registration must be completed 24

hours before the start of the training.

ACCESSIBILITY FOR PEOPLE WITH

DISABILITIES

Do you need special accessibility

accommodations? Contact Mrs.

Fosse, Disability Manager, at psh-

accueil@orsys.fr to review your

request and its feasibility.

Introduction.
Classes.
Inheritance.

Presentation of the C++ language and its evolutions.
Install tools (compiler, IDE, project manager).
Structure of a C++ program.
Compilation, execution, source file management.

Static and dynamic tables.
Character strings (C and C++).
Standard I/O and files.

Classes and objects.
Encapsulation, abstraction.
Builders, destroyers.
Static and instance members.

Unit testing with C++ frameworks (Catch2, GoogleTest).
Performance optimization techniques.
Memory management strategies.

1 Java, learning object-oriented programming - Pre-training digital learning

content

Digital activities
Object-oriented programming (OOP) is a paradigm now present in all modern
programming languages. These concepts enable the production of efficient,
powerful and easy-to-maintain code. This online training course introduces
the key concepts of object-oriented programming, such as the notion of class
and inheritance.

2 A reminder of how C++ works

Hands-on work
Installation et configuration de l’environnement. Structure et syntaxe de
base. Exercices de contrôle de flux.

3 Tables, strings and data management

Hands-on work
Manipulation de données. Exercices sur les structures de données.
Optimisation et bonnes pratiques.

4 Object-oriented programming

Hands-on work
Création de classes simples. Héritage et polymorphisme. Cas d’usage
avancés.

5 Testing and optimization

Hands-on work
Tests unitaires avancés. Optimisation des performances. Déploiement
optimisé.

Dynamic allocation (new, delete).
Pointers, references, smart pointers.
Memory leaks, resource management (RAII).
Good memory management practices.

Introducing the STL and its benefits.
Main containers: vector, list, map, set.
Iterators and collection paths.
Standard algorithms (sort, find, etc.).

Classic design patterns (Singleton, Factory, Observer, etc.).
Using templates for generic patterns.
Best practices in object-oriented design.

Advanced unit testing (mocks, parameterized tests).
Performance optimization (profiling, code analysis).
Refactoring strategies.

Function and class templates.
Specialization and template overload.
Variadic templates and basic metaprogramming.
Best practices and pitfalls to avoid.

6 Memory management in C++

Hands-on work
Manipulation de la mémoire. Atelier RAII et gestion des ressources.
Optimisation mémoire.

7 Introduction to STL (Standard Template Library)

Hands-on work
Manipulation des conteneurs STL. Exercices sur les algorithmes STL.
Optimisation et bonnes pratiques STL.

8 Advanced patterns and design

Hands-on work
Implémentation de patterns. Patterns avancés et templates. Cas d’usage et
revue de code.

9 Advanced testing and optimization

Hands-on work
Tests avancés. Optimisation et refactoring. Déploiement et synthèse.

10 Generic programming and templates

Hands-on work
Création de templates. Métaprogrammation et templates avancés.
Optimisation et bonnes pratiques.

Exception handling (try, catch, throw).
Customized exceptions.
Best practices in error management.
Impact on performance and legibility.

Organization of a multi-file project.
Use of CMake or other build tools.
Dependency management and modularity.
Automated documentation and testing.

Advanced unit and integration testing.
Introduction to continuous integration (CI/CD).
Automated build and test tools.
Synthesis of the day's findings.

Lambda expressions, auto, nullptr, move semantics.
For-range loops, uniform initialization.
Advanced smart pointers, resource management.
Anonymous functions and closures.

Memory security (buffer overflow, use-after-free).
Best practices for input validation.
Concurrent access management (mutex, threads).
Security analysis tools.

11 Exception handling and robustness

Hands-on work
Manipulation des exceptions. Exercices sur la robustesse. Bonnes pratiques
et revue de code.

12 Integration of complex projects

Hands-on work
Structuration d’un projet. Intégration et gestion des dépendances. Cas
d’usage et revue de projet.

13 Testing, CI/CD and synthesis

Hands-on work
Mise en place de tests automatisés. CI/CD et automatisation. Synthèse et
plan d’action.

14 Advanced programming in C++

Hands-on work
Exercices sur les nouveautés du langage. Ateliers sur la modernisation du
code. Optimisation avancée.

15 Safety and robustness in C++

Hands-on work
Analyse de vulnérabilités. Exercices sur la concurrence. Bonnes pratiques et
revue de code.

Introduction to multithreading in C++.
Use of threads, futures, promises.
Synchronization and management of shared resources.
Profiling and performance analysis tools.

Performance and load testing.
Monitoring tools (Valgrind, perf, etc.).
Log analysis and anomaly detection.
Synthesis of the day's findings.

Analysis of specifications.
Modular, object-oriented design.
Development of a complete C++ application.
Test integration, optimization and documentation.

Good development practices C++.
Error and exception handling.
Technical and user documentation.
Maintenance and evolution planning.

Setting personal goals.
Identify resources and tools for progress.
Planning for practical use.
On-the-spot evaluation and feedback.

16 Performance and multithreading

Hands-on work
Mise en œuvre du multithreading. Optimisation de la concurrence. Cas
d’usage et revue de code.

17 Testing, monitoring and synthesis

Hands-on work
Tests de performance. Monitoring et analyse. Synthèse et plan d’action.

18 Summary project

Hands-on work
Réalisation du projet. Soutenance et retours.

19 Consolidating best practices

Hands-on work
Revue de code croisée. Atelier documentation et maintenance. Synthèse et
bonnes pratiques.

20 Personal action plan and closing

Hands-on work
Élaboration du plan d’action personnel. Évaluation et feedback. Clôture et
perspectives.

Fundamental concepts.
Structural diagrams.
Behavioral diagrams.

21 UML, learning to model with diagrams - Post-training digital learning

content

Digital activities
This online training course presents the fundamentals of object-oriented
design, the various UML structural and behavioral diagrams, as well as their
objectives and uses. An example of an object-oriented design will be used to
put into practice the application of UML to efficiently specify, visualize and
document a computer system.

Dates and locations

REMOTE CLASS
2026 : 30 Mar., 22 June, 5 Oct., 14 Dec.

	Course : C++, Object programming
	Practical course - 5d - 35h00 - Ref. CGE Price : 3070 CHF E.T.
	1 Java, learning object-oriented programming - Pre-training digital learning content
	2 A reminder of how C++ works
	3 Tables, strings and data management
	4 Object-oriented programming
	5 Testing and optimization
	6 Memory management in C++
	7 Introduction to STL (Standard Template Library)
	8 Advanced patterns and design
	9 Advanced testing and optimization
	10 Generic programming and templates
	11 Exception handling and robustness
	12 Integration of complex projects
	13 Testing, CI/CD and synthesis
	14 Advanced programming in C++
	15 Safety and robustness in C++
	16 Performance and multithreading
	17 Testing, monitoring and synthesis
	18 Summary project
	19 Consolidating best practices
	20 Personal action plan and closing
	21 UML, learning to model with diagrams - Post-training digital learning content

