
PARTICIPANTS

Pour les adhérents à l'OPCO Atlas :

développeurs, chargés de

développement d’applications

informatiques, chefs de projet

proches du développement…

PREREQUISITES

Familiarity with the principles of

object-oriented programming and

experience of a programming

language in application development.

TRAINER QUALIFICATIONS

The experts leading the training are

specialists in the covered subjects.

They have been approved by our

instructional teams for both their

professional knowledge and their

teaching ability, for each course they

teach. They have at least five to ten

years of experience in their field and

hold (or have held) decision-making

positions in companies.

ASSESSMENT TERMS

The trainer evaluates each

participant’s academic progress

throughout the training using

multiple choice, scenarios, hands-on

work and more.

Participants also complete a

placement test before and after the

course to measure the skills they’ve

developed.

Course : Campus Atlas - JAVA,
the fundamentals of
programming
Practical course - 5d - 35h00 - Ref. LJB
Price : 3070 CHF E.T.

On completion of the course, participants will be able to use the Java language
and associated technologies to create an application. This training program is
intended for employees of professional branches covered by the OPCO Atlas.

Teaching objectives

Understand the basic concepts of the Java language and master its
syntax
Using libraries and APIs

Understand the concepts of object-oriented programming in Java

Creating a Java application

At the end of the training, the participant will be able to:

Intended audience
Pour les adhérents à l'OPCO Atlas : développeurs, chargés de développement
d’applications informatiques, chefs de projet proches du développement…

Prerequisites
Familiarity with the principles of object-oriented programming and experience
of a programming language in application development.

Practical details
Quizzes, games in pairs or in groups, discussions, role-playing, intensive hands-
on work, integrated development environment.

60% pratique – 40% théorie. Pour optimiser le parcours d’apprentissage, des
modules e-learning peuvent être fournis avant et après la session présentielle ou
la classe virtuelle, sur simple demande du participant.

Teaching methods

Course schedule

TEACHING AIDS AND TECHNICAL

RESOURCES

• The main teaching aids and

instructional methods used in the

training are audiovisual aids,

documentation and course material,

hands-on application exercises and

corrected exercises for practical

training courses, case studies and

coverage of real cases for training

seminars.

• At the end of each course or

seminar, ORSYS provides

participants with a course evaluation

questionnaire that is analysed by our

instructional teams.

• A check-in sheet for each half-day

of attendance is provided at the end

of the training, along with a course

completion certificate if the trainee

attended the entire session.

TERMS AND DEADLINES

Registration must be completed 24

hours before the start of the training.

ACCESSIBILITY FOR PEOPLE WITH

DISABILITIES

Do you need special accessibility

accommodations? Contact Mrs.

Fosse, Disability Manager, at psh-

accueil@orsys.fr to review your

request and its feasibility.

Introduction to algorithms.
Basic instructions in pseudo-code.

General principles of object modeling and programming.
Abstraction and encapsulation: interfaces.
The different forms of inheritance, polymorphism.
Introduction to UML modeling: static model, dynamic model, cooperation
model, scenarios.

Variables: declaration and typing.
Defining fields and methods.
Control expressions and instructions.
Enumerated tables and types, autoboxing.
Compilation units and packages.

Static imports.
Keyboard input/output.
The java.time API and date conversion.

Classes and objects.
Fields, methods, constructors.
Self-referencing and static fields/methods.
Methods with a variable number of arguments.
Methodological aspects: class design.

1
Algorithmics - Think before you design - Pre-training digital learning

content

Digital activities
In this online training course, you'll learn how to reason before designing a
program by discovering the basics of algorithmics. In particular, you'll study
the fundamental instructions in pseudo-code.

2 Object techniques

Hands-on work
UML specification of a case study that will be one of the guiding threads of
the following exercises.

3 Basic language constructs

Hands-on work
A series of simple exercises to get to grips with the development
environment.

4 Enforcement and responsibilities

Hands-on work
Create a simple program and use packages.

5 Class definition and instantiation

Hands-on work
Programming of the case study in sub-groups.

The different forms of inheritance: extension and implementation.
Interfaces and interface implementation.
Polymorphism and its implementation.

Extension, definition of derived classes, constructors, references.
Building class hierarchies, factoring code: abstract classes.
Simultaneous use of implementation and extension.

Try blocks, exception generation.
The catch() selection algorithm.
Controlled and uncontrolled exceptions.
Use of the finally block.

Notion of genericity and the benefits of genericity.
The collection interface and list types.
Maps.

Notion of functional interface.
API java.util.fonction, the four categories of functional interfaces.
Collections, forEach and removeIf methods.
Syntax and use of lambda expressions.

Relationship with functional programming.
Essential operators: filter, map, reduce.
Notion of terminal and intermediate operations.
Algorithm simplification.

6 Inheritance (part 1)

Hands-on work
Design and build a simple class hierarchy.

7 Inheritance (part 2)

Hands-on work
Implementing polymorphism and genericity in the case study. Building class
hierarchies and interfaces.

8 The exceptions

Hands-on work
Introduction of exceptions in the case study.

9 Collections and genericity

Hands-on work
Use a generic class and implement lists and maps.

10 Functional programming

Hands-on work
Using lambda expressions with a functional interface. Application in lists and
collections.

11 Streams

Hands-on work
Application of streams to process a collection.

Principle and benefits of Java Database Connectivity (JDBC).
JDBC architecture and drivers.
Environment configuration.

Notion of Connection, Driver.
Create and close connections.
Resource management.

Notion of Statement and ResultSet.
Execute SELECT, INSERT, UPDATE and DELETE queries.
Tracking and processing results.

Statement and PreparedStatement, important differences.
Prevent SQL injections.
Performance optimization.

Notion of transactions and best practices.
Commit and rollback.
Transaction error management.

Java evolution since Java 8.
New APIs and features.
Records, pattern matching, switch expressions.
Text Blocks and enhanced APIs.
Virtual Threads and other improvements.

12 Introduction to JDBC

Hands-on work
JDBC driver installation and configuration. First database connection.

13 Basic connections and queries

Hands-on work
Establish secure connections.

14 Statement and ResultSet

Hands-on work
Implement basic requests with JDBC.

15 PreparedStatement and best practices

Hands-on work
Statement to PreparedStatement conversion. Implement parameterized
queries.

16 Transaction management

Hands-on work
Implementation of complex transactions.

17 What's new in Java (recent versions)

Hands-on work
Refactoring d'ancien code avec les nouvelles fonctionnalités. Exercices
pratiques sur les records et pattern matching. Expérimentation avec les text
blocks.

Use IDE debugging tools.
Advanced debugging techniques.
Logging and monitoring.
Good development practices.

Profiling and performance analysis.
Memory management and Garbage Collector.

Current optimizations (JVM arguments).

Modern test strategies (TDD, BDD).
JUnit 5 and its new features.
Parameter tests, integration tests.
Advanced mocking with Mockito.
Code coverage and static analysis.
Performance and load testing.

Needs analysis and design.
Application architecture.
Setting up the project structure.

Implementation of core functionalities.
Database integration.
Exception handling.

18 Debugging and monitoring tools

Hands-on work
Practical debugging session on the case study.

19 Optimization and performance (1/2)

Hands-on work
Case study performance analysis.

20 Optimization and performance (2/2)

Hands-on work
Implementation of optimizations.

21 Testing and code quality

Hands-on work
Mise en place d'une suite de tests complète pour l'étude de cas. Configuration
d'outils d'analyse de code.

22 Integrative project (part 1)

Hands-on work
Design of the final application.

23 Integrative project (part 2)

Hands-on work
Integration of concepts into the final application.

Finalizing development.
Testing and debugging.
Documentation.

Introduction to JUnit and configuration.
Understand and use Junit annotations.
Test structuring and best practices.
Advanced testing with Junit.
Learn more about JUnit.

24 Integrative project (part 3)

Hands-on work
Application testing and validation.

25 Junit, mastering unit testing in Java - Post-training digital learning

content

Digital activities
In this online training course, you'll discover how to master JUnit 5 to write,
organize and execute efficient unit tests in Java. After an introduction to
fundamental concepts, you'll learn how to structure tests, use key
annotations, handle exceptions, create parameterized tests and test suites,
and integrate JUnit with Maven or Gradle. Each concept will be illustrated by
practical examples, such as testing a calculator or an inventory.

Dates and locations

REMOTE CLASS
2026 : 23 Mar., 15 June, 28 Sep., 7 Dec.

	Course : Campus Atlas - JAVA, the fundamentals of programming
	Practical course - 5d - 35h00 - Ref. LJB Price : 3070 CHF E.T.
	1 Algorithmics - Think before you design - Pre-training digital learning content
	2 Object techniques
	3 Basic language constructs
	4 Enforcement and responsibilities
	5 Class definition and instantiation
	6 Inheritance (part 1)
	7 Inheritance (part 2)
	8 The exceptions
	9 Collections and genericity
	10 Functional programming
	11 Streams
	12 Introduction to JDBC
	13 Basic connections and queries
	14 Statement and ResultSet
	15 PreparedStatement and best practices
	16 Transaction management
	17 What's new in Java (recent versions)
	18 Debugging and monitoring tools
	19 Optimization and performance (1/2)
	20 Optimization and performance (2/2)
	21 Testing and code quality
	22 Integrative project (part 1)
	23 Integrative project (part 2)
	24 Integrative project (part 3)
	25 Junit, mastering unit testing in Java - Post-training digital learning content

