
PARTICIPANTS

For OPCO Atlas members:

developers, architects. 

PREREQUISITES

Knowledge of programming

languages (Java, C#, C++, JavaScript,

Python, etc.).

TRAINER QUALIFICATIONS

The experts leading the training are

specialists in the covered subjects.

They have been approved by our

instructional teams for both their

professional knowledge and their

teaching ability, for each course they

teach. They have at least five to ten

years of experience in their field and

hold (or have held) decision-making

positions in companies.

ASSESSMENT TERMS

The trainer evaluates each

participant’s academic progress

throughout the training using

multiple choice, scenarios, hands-on

work and more.

Participants also complete a

placement test before and after the

course to measure the skills they’ve

developed.

Course : Kotlin Multiplatform,
develop multiplatform
applications
Practical course - 3d - 21h00 - Ref. LKD 
Price : 1940 CHF E.T.

On completion of the course, participants will be able to significantly reduce
development and maintenance costs, accelerate the time-to-market of their
applications, and communicate effectively with native teams when integrating
KMP modules into existing projects. This training program is aimed at
employees of professional branches covered by the OPCO Atlas.

Teaching objectives

Kotlin Multiplateform concepts

Setting up a development environment

Design the architecture of a multiplatform mobile application

Building a fluid, high-performance user interface

Perform tests to ensure application quality and reliability

At the end of the training, the participant will be able to:

Intended audience
For OPCO Atlas members: developers, architects.

Prerequisites
Knowledge of programming languages (Java, C#, C++, JavaScript, Python, etc.).

Practical details

To optimize the learning experience, e-learning modules can be provided before
and after the classroom session or virtual class, at the participant's request.

Teaching methods

Course schedule



TEACHING AIDS AND TECHNICAL

RESOURCES 

• The main teaching aids and

instructional methods used in the

training are audiovisual aids,

documentation and course material,

hands-on application exercises and

corrected exercises for practical

training courses, case studies and

coverage of real cases for training

seminars. 

• At the end of each course or

seminar, ORSYS provides

participants with a course evaluation

questionnaire that is analysed by our

instructional teams. 

• A check-in sheet for each half-day

of attendance is provided at the end

of the training, along with a course

completion certificate if the trainee

attended the entire session.

TERMS AND DEADLINES

Registration must be completed 24

hours before the start of the training.

ACCESSIBILITY FOR PEOPLE WITH

DISABILITIES

Do you need special accessibility

accommodations? Contact Mrs.

Fosse, Disability Manager, at psh-

accueil@orsys.fr to review your

request and its feasibility.

Introduction to algorithms.
Basic instructions in pseudo-code.

Traditional multiplatform development issues.
Evolution from KMM to KMP: history and JetBrains vision.
Comparison with other solutions (React Native, Flutter, Xamarin).
Use cases and success stories (Netflix, VMware, Philips).

Layered architecture: Common, Android, iOS, web.
Expect/actual mechanism: declarations and implementations.
Code-sharing strategies: what to share versus what not to share.

System requirements by platform (Windows, macOS, Linux).
Installing tools: Android Studio, Xcode, KMP plugins.
Gradle configuration and project structure.

Creating a KMP project with the IntelliJ wizard.
Folder structure: commonMain, androidMain, iosMain.
First shared class and its specific implementations.
Build and run on different platforms.

1 Algorithms, reasoning before design - Pre-training digital learning

content

Digital activities
This online course teaches you how to think before you design a program, and
introduces you to the basics of algorithmics. In particular, participants will
study the fundamental instructions in pseudo-code.

2 Introduction to Kotlin Multiplatform

Hands-on work
Group brainstorming: What are the current challenges in mobile
development? Comparative analysis of multiplatform solutions in sub-
groups.

3 Architecture and fundamental concepts

Hands-on work
Creation of first simple expect/actual statements.

4 Environment configuration

Hands-on work
Guided installation at workstations with collective verification.

5 First KMP Project

Hands-on work
Development in pairs: creation of a [ Hello KMP " app with display of the
current platform. Presentation of achievements and feedback.



Common versus specific dependencies.
KMP library ecosystem: kotlinx, Ktor, SQLDelight.
Advanced Gradle configuration for sourceSets.

Package and module organization.
Recommended patterns: Repository, UseCase, ViewModel.
Cross-platform error handling with sealed classes.

Clean multi-platform architecture.
Implementation of the Repository pattern with common interfaces.
ViewModels shared with StateFlow and coroutines.
Dependency injection with Koin.

HTTP client with Ktor: configuration and use.
JSON serialization with kotlinx.serialization.
Local storage with SQLDelight: setup and queries.
Cache strategies and synchronization.

StateFlow and SharedFlow: concepts and differences.
UI status management: Loading, Success, Error.
Combination of flow and zip.

6 Dependency management

Hands-on work
Add and test common dependencies (kotlinx-coroutines, kotlinx-
serialization).

7 Patterns and best practices

Hands-on work
Refactoring of the previously created project according to the patterns
presented in sub-groups

8 MVVM architecture and Repository Design Pattern

Hands-on work
Development of a user manager with complete Repository Design Pattern.

9 Data management and APIs

Hands-on work
Creation of a REST API client to retrieve weather data. - Implemented local
caching with SQLDelight.

10 Status management and responsiveness

Hands-on work
Implementation of a global state manager for the weather application.



Introduction to Compose Multiplatform: basic concepts.
UI components: Text, Button, LazyColumn, Card.
Themes and Material Design management.
Navigate between screens with Compose Navigation.
Reactivity with collectAsState.

Android integration: using the shared module.
iOS integration: Swift/Kotlin framework and bridge.
Data transfer between native and shared layers.

Specific APIs: geolocation, camera, notifications.
System API abstraction strategies.
Performance and optimization by platform.

Shared unit tests : CommonTest and specific tests.
Mocking with MockK in a multiplatform context.
Testing ViewModels and Repositories.
Integration tests with databases and APIs.

Compose tests with ComposeTestRule.
User interaction testing and status verification.
Navigation and user flow tests.
Test strategies for native parts.

11 User interfaces with Compose Multiplatform

Hands-on work
Creation of the weather application interface with Compose. Implemented
navigation between list and detail screens.

12 Native integration

Hands-on work
Integration of KMP ViewModels in Android activities and iOS
ViewControllers.

13 Management of specific platforms

Hands-on work
Geolocation added to weather app with specific implementations.

14 KMP test strategy

Hands-on work
Writing unit tests for the components developed in the previous days.

15 User interface testing

Hands-on work
Creation of UI tests for weather application screens.



GitHub Actions configuration for KMP.
Automated build for Android (APK/AAB) and iOS (IPA).
Deployment on stores: Play Store, App Store.
Certificate and signature management.

Product catalog with search and filters.
Persistent shopping cart.
User authentication.
Responsive interface and fluid navigation.
Unit and integration testing.

KMP ecosystem: new libraries and developments.
Community and resources: documentation, forums, conferences.
Corporate adoption strategies: gradual migration, team training.
Roadmap KMP: Compose Multiplatform Web, Desktop, Wasm.

Introducing Kotlin.
Kotlin fundamentals.
Functions.
Coroutines.
Object-oriented programming.
Android development.
Native development.
JavaScript development.
Server-side development.

16 Deployment and CI/CD

Hands-on work
Setting up a basic CI/CD pipeline with GitHub Actions.

17 Final Project - E-commerce application

Hands-on work
Architecture et planification du projet. Développement des fonctionnalités
core. Tests et finalisations.

18 Perspectives and "going further"

Storyboarding workshops
Development of a personalized action plan for each participant.

19 Kotlin, the essential basics - Post-training digital learning content

Digital activities
This online training course presents the Kotlin language, its fundamentals, its
various functions, the notion of coroutine, object-oriented programming with
a demonstration of developing an application in Android Studio, how to use
Kotlin for native or server-side development and how Kotlin can generate
JavaScript code.

Dates and locations

REMOTE CLASS 
2026 : 10 Mar., 19 May, 6 Oct., 8 Dec.


	Course : Kotlin Multiplatform, develop multiplatform applications
	Practical course - 3d - 21h00 - Ref. LKD  Price : 1940 CHF E.T.
	1 Algorithms, reasoning before design - Pre-training digital learning content
	2 Introduction to Kotlin Multiplatform
	3 Architecture and fundamental concepts
	4 Environment configuration
	5 First KMP Project
	6 Dependency management
	7 Patterns and best practices
	8 MVVM architecture and Repository Design Pattern
	9 Data management and APIs
	10 Status management and responsiveness
	11 User interfaces with Compose Multiplatform
	12 Native integration
	13 Management of specific platforms
	14 KMP test strategy
	15 User interface testing
	16 Deployment and CI/CD
	17 Final Project - E-commerce application
	18 Perspectives and "going further"
	19 Kotlin, the essential basics - Post-training digital learning content


