
Publication date : 02/09/2024

PARTICIPANTS

Developers, software architects,

project managers.

PREREQUISITES

Good knowledge of C or C++. Basic

knowledge of Multicore application

concepts.

TRAINER QUALIFICATIONS

The experts leading the training are

specialists in the covered subjects.

They have been approved by our

instructional teams for both their

professional knowledge and their

teaching ability, for each course they

teach. They have at least five to ten

years of experience in their field and

hold (or have held) decision-making

positions in companies.

ASSESSMENT TERMS

The trainer evaluates each

participant’s academic progress

throughout the training using

multiple choice, scenarios, hands-on

work and more.

Participants also complete a

placement test before and after the

course to measure the skills they’ve

developed.

Course : C/C++, programming
applications in Multicore
Practical course - 3d - 21h00 - Ref. MUC
Price : 1940 CHF E.T.

 4,8 / 5

You'll learn about multicore architectures and their programming, techniques
for implementing a multithread or multiprocess approach, and languages
dedicated to parallel programming. You'll also learn about data access
synchronization constraints and the precautions to be taken.

Teaching objectives

Mastering the challenges of multicore programming

Design and develop thread- and process-based applications

Master parallel programming models and available libraries

Debugging and profiling Multicore applications

At the end of the training, the participant will be able to:

Intended audience
Developers, software architects, project managers.

Prerequisites
Good knowledge of C or C++. Basic knowledge of Multicore application
concepts.

Practical details

Practical work will be carried out in C/C++ under Visual Studio in a Windows
environment.

Hands-on work

Course schedule

javascript:void(0)

TEACHING AIDS AND TECHNICAL

RESOURCES

• The main teaching aids and

instructional methods used in the

training are audiovisual aids,

documentation and course material,

hands-on application exercises and

corrected exercises for practical

training courses, case studies and

coverage of real cases for training

seminars.

• At the end of each course or

seminar, ORSYS provides

participants with a course evaluation

questionnaire that is analysed by our

instructional teams.

• A check-in sheet for each half-day

of attendance is provided at the end

of the training, along with a course

completion certificate if the trainee

attended the entire session.

TERMS AND DEADLINES

Registration must be completed 24

hours before the start of the training.

ACCESSIBILITY FOR PEOPLE WITH

DISABILITIES

Do you need special accessibility

accommodations? Contact Mrs.

Fosse, Disability Manager, at psh-

accueil@orsys.fr to review your

request and its feasibility.

The challenges of multicore programming.
Table of usable technologies: process, thread and parallelism.
Description of how a processor works.
Architecture in "Hyperthreading".
INTEL and AMD processor architectures.
NVidia architectures and APIs.
Shared vs. distributed memory architecture.

Importance of modeling aspects.
Parallel processing patterns.
Use of asynchronous mechanisms.
Developing a new application: precautions and modeling. Avoiding
"singletons".
Modify an existing application in Multicore.
Choice of architecture: a compromise between synchronization and
performance. Multiprocess/multithread choices.

Threads in an industrial application.
Thread scheduling.
Management of stacks and "call stack" in threads.
Multithreaded debuggers.
Management of synchronization objects: critical sections, Mutexes and
Semaphores.
Develop "thread safe".
Thread API TBB, Clik++, C++11, boost threads, pthreads.

Process address spaces, organization.
Criteria for choosing a multi-process approach.
Inter-process communication (IPC) techniques.
Multi-process debugging tools.
Advantages and disadvantages of multi-process techniques.

Contribution and objectives of parallel programming.
The "OpenMP" C++ library (shared memory programming).
The "OpenMPI" library (distributed memory programming).
Use GPUs on graphics cards for calculation.
Kits from NVidia (CUDA) and ATI.
The "OpenAcc" library for GPU programming.
The "OpenCL" library for CPU and GPU parallel programming.

1 Introduction

2 Application modeling

3 Threads

Hands-on work
Threads and synchronization in C/C++.

4 Process

Hands-on work
Manage asynchronous processing with the C/C++ API.

5 Parallel programming

Hands-on work
Parallelizing algorithms with "OpenMP" in C++. Using the OpenCL API.

Conclusion of the techniques studied.
The future of C++ with multicore.

6 Summary and conclusion

Dates and locations

REMOTE CLASS
2026 : 11 Mar., 1 June, 16 Sep., 16 Dec.

	Course : C/C++, programming applications in Multicore
	Practical course - 3d - 21h00 - Ref. MUC Price : 1940 CHF E.T.
	1 Introduction
	2 Application modeling
	3 Threads
	4 Process
	5 Parallel programming
	6 Summary and conclusion

