@orsys

Course : Campus Atlas -
Python, object-oriented
programming

Practical course - 5d - 35h00 - Ref. PYE
Price: 3070 CHFE.T.

NEW

On completion of the course, participants will be able to use the main features of
the Python language to develop multiplatform applications. This training
program is intended for employees of professional branches covered by the
OPCOAtlas.

@’j Teaching objectives
At the end of the training, the participant will be able to:

Understand the basics of the Python language and its ecosystem
Learn the principles of object-oriented programming
Understanding and using functions and modules

Design graphicinterfaces

Usetools to test and evaluate the quality of a Python program

Intended audience

For OPCO Atlas members: developers, engineers, project managers with close
links to development.

Prerequisites
Basic programming skills (preferably in object-oriented languages).

Practical details
Hands-on work
Practical exercises and/or case studies.

Teaching methods

60% pratique - 40% théorie. Pour optimiser le parcours d’apprentissage, des
modules e-learning peuvent étre fournis avant et aprés la session présentielle ou
laclassevirtuelle, sur simple demande du participant.

Course schedule

PARTICIPANTS

For OPCO Atlas members:
developers, engineers, project
managers with close links to

development.

PREREQUISITES
Basic programming skills (preferably

in object-oriented languages).

TRAINER QUALIFICATIONS

The experts leading the training are
specialists in the covered subjects.
They have been approved by our
instructional teams for both their
professional knowledge and their
teaching ability, for each course they
teach. They have at least five to ten
years of experience in their field and
hold (or have held) decision-making

positions in companies.

ASSESSMENT TERMS

The trainer evaluates each
participant’s academic progress
throughout the training using
multiple choice, scenarios, hands-on
work and more.

Participants also complete a
placement test before and after the
course to measure the skills they've

developed.




@ Algorithms, reasoning before design - Pre-training digital learning

content

e Introductiontoalgorithms.
e Basicinstructionsin pseudo-code.

Digital activities

This online training course teaches you to think before you design a program,
and covers the basics of algorithmics. Fundamental instructions in pseudo-

code will also be covered.

@ Introduction to Python

Installation and configuration of the environment.
Fundamental data types.

Basicdatastructures.

Variables and scope.

Operators and expressions.

Python style and conventions (PEP 8).

Hands-on work

Setup del’environnement. Types et structures. Style et bonnes pratiques.

@ Control structures and functions

Advanced control structures.
Defining and using functions.
Multiple parameters and returns.
Error and exception handling.
Python modules and packages.
Good structuring practices.

Hands-on work
Structures de controle. Fonctions et modularité. Gestion des erreurs.

@ Object-oriented approach

Fundamental principles of OOP.
Classes and instances.
Inheritance and composition.
Polymorphism and abstraction.
Interfaces and abstract classes.
Design patterns in Python.

Hands-on work

Introduction ala programmation orientée objet (POO). Création de classes.

Design patterns.

@ Advanced object handling

Properties and descriptors.
Magic methods.
Metaclasses and decorators.
Introspection and reflection.
Memory management.

OOP best practices.

Hands-on work
Properties et descripteurs. Méthodes spéciales. Métaprogrammation.

TEACHING AIDS AND TECHNICAL
RESOURCES

e The main teaching aids and
instructional methods used in the
training are audiovisual aids,
documentation and course material,
hands-on application exercises and
corrected exercises for practical
training courses, case studies and
coverage of real cases for training
seminars.

o At the end of each course or
seminar, ORSYS provides
participants with a course evaluation
questionnaire that is analysed by our
instructional teams.

e A check-in sheet for each half-day
of attendance is provided at the end
of the training, along with a course
completion certificate if the trainee
attended the entire session.

TERMS AND DEADLINES
Registration must be completed 24

hours before the start of the training.

ACCESSIBILITY FOR PEOPLE WITH
DISABILITIES

Do you need special accessibility
accommodations? Contact Mrs.
Fosse, Disability Manager, at psh-
accueil@orsys.fr to review your

request and its feasibility.




@ Advanced OOP

Special Python methods.

Multiple inheritance and method order resolution (MRO).
Context managers and Python protocols.

Advanced design patterns.

Mixins and composition.

Anti-patterns and common pitfalls.

Hands-on work

Méthodes spéciales avancées. Héritage et composition. Design patterns

avanceés.

@ Advanced error handling

Complete exception hierarchy.
Create custom exceptions.
Advanced logging and configuration.
Debugging and troubleshooting.
Asynchronous error handling.

Good robustness practices.

Hands-on work
Exceptions personnalisées. Logging avancé. Debugging et tests.

Using StdLib

e Command-line arguments and options (argparse).

e Regularexpressions (re).

e File system manipulation (os, pathlib).

e |mportant modules (datetime, collections, itertools).
e Databases with sqlite3.

Hands-on work

Manipulation de fichiers. Expressions réguliéres. Base de données SQLite.

@ Standard Python library

sys and os modules for system interaction.
Advanced file manipulation with pathlib.
Specialized collections (collections, heapq).
Regular expressions with re.

Serialization with pickle and json.

Competition with threading and multiprocessing.

Hands-on work
Manipulation systéme. Collections avancées. RegEx et sérialisation.



CLI tools and utilities

Arguments and options with argparse.
Configuration with configparser.
Loggingin CLI.

Rich consoleinterfaces.

System automation.

CLI tool distribution.

Hands-on work
Parsing d’arguments. Interface utilisateur. Packaging et distribution.

@ Testing and Documentation

Unit testing with unittest and pytest.

Test Driven Development (TDD).
Documentation with docstrings and type hints.
Generating documentation with Sphinx.

Code coverage measurement.

Continuous integration.

Hands-on work
Tests unitaires. Documentation. Couverture et Cl.

@ Code quality

e Staticanalysis tools (pylint, flake8).
e Style conventions (PEP 8).

e Refactoringtechniques.

e Codereview and peer programming.
e Measures of complexity.

e Automated controls.

Hands-on work
Analyse statique. Refactoring. Revue de code.

@ Graphical interfaces with Tkinter

Introductionto Tkinter and its alternatives.
Basicwidgets and layouts.

Event management.

MVC patternin GUI.

Styles and themes.

Good interface practices.

Hands-on work
Fondamentaux Tkinter. Widgets avancés. Architecture MVC.

Advanced interface and GUI testing

Custom widgets.

Advanced styles and themes.
Animation and visual effects.
Graphical interface testing.
Accessibility.
Internationalization.

Hands-on work
Widgets custom. Tests GUI. Internationalisation.



@ Interfacingwith C

Introduction to ctypes and its alternatives.
Cdatatypes and their mapping.

Call Cfunctions from Python.

Memory management and pointers.
Worapping libraries C.

Performance and debugging.

Hands-on work
Introduction a ctypes. Appels de fonctions. Performance et debug.

Optimization with Cython

Introduction to Cython and its ecosystem.
Cython syntax and static types.
Compilation and build process.
Optimization of existing Python code.
Integration with C/C++.

Profiling and benchmarking.

Hands-on work
Fondamentaux Cython. Optimisation. Integration C/C++

@ Profiling and performance

Profiling tools (cProfile, line_profiler).
CPU and memory performance analysis.
Algorithmic optimization.
Benchmarking and metrics.

Memory leaks and garbage collection.
Production monitoring.

Hands-on work
Profilage CPU. Mémoire et GC. Benchmarking.

Optimization best practices

Python optimization patterns.
High-performance architectures.
Monitoring and observability.
Optimized deployment.
Horizontal and vertical scalability.
Load and stress tests.

Hands-on work
Architecture performante. Tests de charge. Monitoring production.



Launching the synthesis project

Presentation of project topics.
Development methodology.
Team organization.

Planning and milestones.
Architecture and design.
Quality standards.

Hands-on work
Initialisation projet. Architecture. Setup projet.

Development - Phase 1

Setting up the basicstructure.
Implementation of core features.
Unit testing and documentation.
Git workflow and collaboration.
Codereview and quality.
Progress monitoring.

Hands-on work
Corefeatures. Git workflow. Point d’avancement.

@ Development - Phase 2

Finalization of functionalities.
Integration testing.

User documentation.
Preparing for deployment.
Optimization and refactoring.
Demo preparation.

Hands-on work
Features avancées. Documentation. Préparation démo.

@ Defense and assessment

Project presentations.
Technical demonstrations.
Feedback.

Assessment of prior learning.
Discussion perspectives.
Training feedback.

Hands-on work

Présentations. Revue technique. Perspectives. Cloture de laformation.



@ Python 3, the language basics - Post-training digital learning content

Introduction.
Datatypes.
Algorithms.

Data manipulation.

Digital activities

This online training course introduces the essential basics of the Python
language to learn how to program efficiently. Participants will study program
structure, data types, functions and algorithmic concepts, before moving on
to data manipulation and object-oriented programming. Using a database

with SQLAIchemy and applying best practices to develop clean, maintainable
Python code will also be covered.

Python 3, advanced concepts - Post-training digital learning content

Object model.

Typical objects.
Testing.

XML.

Document generation.

Digital activities

This online training course introduces the Python object model and typed
objects, one of Python's modern development axes. Participants will then be
able to build high-performance, modern applications and secure data
processing. They will discover best practices for testing their code and
ensuringits quality. They will also learn how to manipulate XML with Python,
and generate PDF, openDocument and image documents.

Dates and locations

REMOTE CLASS
2026:9Mar., 1June, 14 Sep., 23 Nov.



	Course : Campus Atlas - Python, object-oriented programming
	Practical course - 5d - 35h00 - Ref. PYE  Price : 3070 CHF E.T.
	1 Algorithms, reasoning before design - Pre-training digital learning content
	2 Introduction to Python
	3 Control structures and functions
	4 Object-oriented approach
	5 Advanced object handling
	6 Advanced OOP
	7 Advanced error handling
	8 Using StdLib
	9 Standard Python library
	10 CLI tools and utilities
	11 Testing and Documentation
	12 Code quality
	13 Graphical interfaces with Tkinter
	14 Advanced interface and GUI testing
	15 Interfacing with C
	16 Optimization with Cython
	17 Profiling and performance
	18 Optimization best practices
	19 Launching the synthesis project
	20 Development - Phase 1
	21 Development - Phase 2
	22 Defense and assessment
	23 Python 3, the language basics - Post-training digital learning content
	24 Python 3, advanced concepts - Post-training digital learning content


