
PARTICIPANTS

For OPCO Atlas members:

developers, engineers, project

managers with close links to

development.

PREREQUISITES

Basic programming skills (preferably

in object-oriented languages).

TRAINER QUALIFICATIONS

The experts leading the training are

specialists in the covered subjects.

They have been approved by our

instructional teams for both their

professional knowledge and their

teaching ability, for each course they

teach. They have at least five to ten

years of experience in their field and

hold (or have held) decision-making

positions in companies.

ASSESSMENT TERMS

The trainer evaluates each

participant’s academic progress

throughout the training using

multiple choice, scenarios, hands-on

work and more.

Participants also complete a

placement test before and after the

course to measure the skills they’ve

developed.

Course : Campus Atlas -
Python, object-oriented
programming
Practical course - 5d - 35h00 - Ref. PYE
Price : 3070 CHF E.T.

On completion of the course, participants will be able to use the main features of
the Python language to develop multiplatform applications. This training
program is intended for employees of professional branches covered by the
OPCO Atlas.

Teaching objectives

Understand the basics of the Python language and its ecosystem

Learn the principles of object-oriented programming

Understanding and using functions and modules

Design graphic interfaces

Use tools to test and evaluate the quality of a Python program

At the end of the training, the participant will be able to:

Intended audience
For OPCO Atlas members: developers, engineers, project managers with close
links to development.

Prerequisites
Basic programming skills (preferably in object-oriented languages).

Practical details

Practical exercises and/or case studies.

60% pratique – 40% théorie. Pour optimiser le parcours d’apprentissage, des
modules e-learning peuvent être fournis avant et après la session présentielle ou
la classe virtuelle, sur simple demande du participant.

Hands-on work

Teaching methods

Course schedule

TEACHING AIDS AND TECHNICAL

RESOURCES

• The main teaching aids and

instructional methods used in the

training are audiovisual aids,

documentation and course material,

hands-on application exercises and

corrected exercises for practical

training courses, case studies and

coverage of real cases for training

seminars.

• At the end of each course or

seminar, ORSYS provides

participants with a course evaluation

questionnaire that is analysed by our

instructional teams.

• A check-in sheet for each half-day

of attendance is provided at the end

of the training, along with a course

completion certificate if the trainee

attended the entire session.

TERMS AND DEADLINES

Registration must be completed 24

hours before the start of the training.

ACCESSIBILITY FOR PEOPLE WITH

DISABILITIES

Do you need special accessibility

accommodations? Contact Mrs.

Fosse, Disability Manager, at psh-

accueil@orsys.fr to review your

request and its feasibility.

Introduction to algorithms.
Basic instructions in pseudo-code.

Installation and configuration of the environment.
Fundamental data types.
Basic data structures.
Variables and scope.
Operators and expressions.
Python style and conventions (PEP 8).

Advanced control structures.
Defining and using functions.
Multiple parameters and returns.
Error and exception handling.
Python modules and packages.
Good structuring practices.

Fundamental principles of OOP.
Classes and instances.
Inheritance and composition.
Polymorphism and abstraction.
Interfaces and abstract classes.
Design patterns in Python.

Properties and descriptors.
Magic methods.
Metaclasses and decorators.
Introspection and reflection.
Memory management.
OOP best practices.

1 Algorithms, reasoning before design - Pre-training digital learning

content

Digital activities
This online training course teaches you to think before you design a program,
and covers the basics of algorithmics. Fundamental instructions in pseudo-
code will also be covered.

2 Introduction to Python

Hands-on work
Setup de l’environnement. Types et structures. Style et bonnes pratiques.

3 Control structures and functions

Hands-on work
Structures de contrôle. Fonctions et modularité. Gestion des erreurs.

4 Object-oriented approach

Hands-on work
Introduction à la programmation orientée objet (POO). Création de classes.
Design patterns.

5 Advanced object handling

Hands-on work
Properties et descripteurs. Méthodes spéciales. Métaprogrammation.

Special Python methods.
Multiple inheritance and method order resolution (MRO).
Context managers and Python protocols.
Advanced design patterns.
Mixins and composition.
Anti-patterns and common pitfalls.

Complete exception hierarchy.
Create custom exceptions.
Advanced logging and configuration.
Debugging and troubleshooting.
Asynchronous error handling.
Good robustness practices.

Command-line arguments and options (argparse).
Regular expressions (re).
File system manipulation (os, pathlib).
Important modules (datetime, collections, itertools).
Databases with sqlite3.

sys and os modules for system interaction.
Advanced file manipulation with pathlib.
Specialized collections (collections, heapq).
Regular expressions with re.
Serialization with pickle and json.
Competition with threading and multiprocessing.

6 Advanced OOP

Hands-on work
Méthodes spéciales avancées. Héritage et composition. Design patterns
avancés.

7 Advanced error handling

Hands-on work
Exceptions personnalisées. Logging avancé. Debugging et tests.

8 Using StdLib

Hands-on work
Manipulation de fichiers. Expressions régulières. Base de données SQLite.

9 Standard Python library

Hands-on work
Manipulation système. Collections avancées. RegEx et sérialisation.

Arguments and options with argparse.
Configuration with configparser.
Logging in CLI.
Rich console interfaces.
System automation.
CLI tool distribution.

Unit testing with unittest and pytest.
Test Driven Development (TDD).
Documentation with docstrings and type hints.
Generating documentation with Sphinx.
Code coverage measurement.
Continuous integration.

Static analysis tools (pylint, flake8).
Style conventions (PEP 8).
Refactoring techniques.
Code review and peer programming.
Measures of complexity.
Automated controls.

Introduction to Tkinter and its alternatives.
Basic widgets and layouts.
Event management.
MVC pattern in GUI.
Styles and themes.
Good interface practices.

Custom widgets.
Advanced styles and themes.
Animation and visual effects.
Graphical interface testing.
Accessibility.
Internationalization.

10 CLI tools and utilities

Hands-on work
Parsing d’arguments. Interface utilisateur. Packaging et distribution.

11 Testing and Documentation

Hands-on work
Tests unitaires. Documentation. Couverture et CI.

12 Code quality

Hands-on work
Analyse statique. Refactoring. Revue de code.

13 Graphical interfaces with Tkinter

Hands-on work
Fondamentaux Tkinter. Widgets avancés. Architecture MVC.

14 Advanced interface and GUI testing

Hands-on work
Widgets custom. Tests GUI. Internationalisation.

Introduction to ctypes and its alternatives.
C data types and their mapping.
Call C functions from Python.
Memory management and pointers.
Wrapping libraries C.
Performance and debugging.

Introduction to Cython and its ecosystem.
Cython syntax and static types.
Compilation and build process.
Optimization of existing Python code.
Integration with C/C++.
Profiling and benchmarking.

Profiling tools (cProfile, line_profiler).
CPU and memory performance analysis.
Algorithmic optimization.
Benchmarking and metrics.
Memory leaks and garbage collection.
Production monitoring.

Python optimization patterns.
High-performance architectures.
Monitoring and observability.
Optimized deployment.
Horizontal and vertical scalability.
Load and stress tests.

15 Interfacing with C

Hands-on work
Introduction à ctypes. Appels de fonctions. Performance et debug.

16 Optimization with Cython

Hands-on work
Fondamentaux Cython. Optimisation. Integration C/C++

17 Profiling and performance

Hands-on work
Profilage CPU. Mémoire et GC. Benchmarking.

18 Optimization best practices

Hands-on work
Architecture performante. Tests de charge. Monitoring production.

Presentation of project topics.
Development methodology.
Team organization.
Planning and milestones.
Architecture and design.
Quality standards.

Setting up the basic structure.
Implementation of core features.
Unit testing and documentation.
Git workflow and collaboration.
Code review and quality.
Progress monitoring.

Finalization of functionalities.
Integration testing.
User documentation.
Preparing for deployment.
Optimization and refactoring.
Demo preparation.

Project presentations.
Technical demonstrations.
Feedback.
Assessment of prior learning.
Discussion perspectives.
Training feedback.

19 Launching the synthesis project

Hands-on work
Initialisation projet. Architecture. Setup projet.

20 Development - Phase 1

Hands-on work
Core features. Git workflow. Point d’avancement.

21 Development - Phase 2

Hands-on work
Features avancées. Documentation. Préparation démo.

22 Defense and assessment

Hands-on work
Présentations. Revue technique. Perspectives. Clôture de la formation.

Introduction.
Data types.
Algorithms.
Data manipulation.

Object model.
Typical objects.
Testing.
XML.
Document generation.

23 Python 3, the language basics - Post-training digital learning content

Digital activities
This online training course introduces the essential basics of the Python
language to learn how to program efficiently. Participants will study program
structure, data types, functions and algorithmic concepts, before moving on
to data manipulation and object-oriented programming. Using a database
with SQLAlchemy and applying best practices to develop clean, maintainable
Python code will also be covered.

24 Python 3, advanced concepts - Post-training digital learning content

Digital activities
This online training course introduces the Python object model and typed
objects, one of Python's modern development axes. Participants will then be
able to build high-performance, modern applications and secure data
processing. They will discover best practices for testing their code and
ensuring its quality. They will also learn how to manipulate XML with Python,
and generate PDF, openDocument and image documents.

Dates and locations

REMOTE CLASS
2026 : 9 Mar., 1 June, 14 Sep., 23 Nov.

	Course : Campus Atlas - Python, object-oriented programming
	Practical course - 5d - 35h00 - Ref. PYE Price : 3070 CHF E.T.
	1 Algorithms, reasoning before design - Pre-training digital learning content
	2 Introduction to Python
	3 Control structures and functions
	4 Object-oriented approach
	5 Advanced object handling
	6 Advanced OOP
	7 Advanced error handling
	8 Using StdLib
	9 Standard Python library
	10 CLI tools and utilities
	11 Testing and Documentation
	12 Code quality
	13 Graphical interfaces with Tkinter
	14 Advanced interface and GUI testing
	15 Interfacing with C
	16 Optimization with Cython
	17 Profiling and performance
	18 Optimization best practices
	19 Launching the synthesis project
	20 Development - Phase 1
	21 Development - Phase 2
	22 Defense and assessment
	23 Python 3, the language basics - Post-training digital learning content
	24 Python 3, advanced concepts - Post-training digital learning content

