
Publication date : 07/04/2024

PARTICIPANTS

Developers, data scientists, data

analysts, project managers.

PREREQUISITES

Good knowledge of the Python

language and, if possible, its scientific

libraries Numpy, Scipy and Pandas.

TRAINER QUALIFICATIONS

The experts leading the training are

specialists in the covered subjects.

They have been approved by our

instructional teams for both their

professional knowledge and their

teaching ability, for each course they

teach. They have at least five to ten

years of experience in their field and

hold (or have held) decision-making

positions in companies.

ASSESSMENT TERMS

The trainer evaluates each

participant’s academic progress

throughout the training using

multiple choice, scenarios, hands-on

work and more.

Participants also complete a

placement test before and after the

course to measure the skills they’ve

developed.

Course : Python, parallel
programming and distributed
computing
Practical course - 4d - 28h00 - Ref. PYP
Price : 2470 CHF E.T.

 4,4 / 5

The success of Python for scientific applications (Data science, Big Data,
Machine Learning...) requires more and more computational capacity. This
course introduces you to the parallel/distributed computing paradigm, from
basic concepts to the most advanced techniques and libraries in the Python
ecosystem.

Teaching objectives

Acquire the concepts of parallel programming

Identify which parts of a program can be parallelized

A clear vision of the parallel computing ecosystem for Python

Developing parallelized applications (asynchronous programming,
multithreading, multiprocessing, distributed computing)
Know how to perform calculations on graphics card GPUs

How to run a task workflow in the cloud

At the end of the training, the participant will be able to:

Intended audience
Developers, data scientists, data analysts, project managers.

Prerequisites
Good knowledge of the Python language and, if possible, its scientific libraries
Numpy, Scipy and Pandas.

Practical details

70% of the time is devoted to putting the concepts and libraries presented into
practice. The use of Jupyter notebooks and code execution in the Cloud provide
real interactivity.

Teaching methods

Course schedule

javascript:void(0)

TEACHING AIDS AND TECHNICAL

RESOURCES

• The main teaching aids and

instructional methods used in the

training are audiovisual aids,

documentation and course material,

hands-on application exercises and

corrected exercises for practical

training courses, case studies and

coverage of real cases for training

seminars.

• At the end of each course or

seminar, ORSYS provides

participants with a course evaluation

questionnaire that is analysed by our

instructional teams.

• A check-in sheet for each half-day

of attendance is provided at the end

of the training, along with a course

completion certificate if the trainee

attended the entire session.

TERMS AND DEADLINES

Registration must be completed 24

hours before the start of the training.

ACCESSIBILITY FOR PEOPLE WITH

DISABILITIES

Do you need special accessibility

accommodations? Contact Mrs.

Fosse, Disability Manager, at psh-

accueil@orsys.fr to review your

request and its feasibility.

The different forms of parallelism and their architectures (CPU, GPU,
ASIC, FPGA, NUMA, OpenMP, MPI, etc.).
Constraints and limits.
The parallel computing ecosystem for Python.

Asynchronous programming: generators and asynchrony.
Multithreading: concurrent access, locks...
The limits of multithreading in Python.
Multiprocessing: shared memory, process pools, conditions...
First distributed computing cluster with Managers and Proxy.

Concepts and configuration.
Implementation of each library.

GPU architectures: kernels, memory, threads...
OpenCL and CUDA libraries.
Implementation of Scikit-cuda, PyCUDA and Numba libraries.

Message Passing Interface with MPI4py.
PyOpenCL: implementing code with heterogeneous systems.
Joblib: Lightweight pipelines.
Greenlets: towards better multithreading.
Pythran: Compile your Python programs on multicore and vectorized
architectures.

1 Parallelism and the Python ecosystem

Hands-on work
Program profiling (cProfile, Kcachegrind and pyprof2calltree). Compiling a C
program with SIMD instructions. Installing Numpy: how to get a x40 speed
boost.

2 The basics: asynchronous programming, multithreading and

multiprocessing

Hands-on work
Realization of the same data processing chain with each model, and of a
distributed computing cluster between the participants' machines.

3 Distributed computing : Celery, Dask and PySpark

Hands-on work
Several exercises will be covered (matrix calculation, image/text processing,
Bitcoin, Machine Learning...). Use of Zeppelin notebooks.

4 GPU computing

Hands-on work
Matrix calculation and image processing. Machine Learning with the mxnet
library: Neural Art. Just In Time compilation.

5 Other parallel programming libraries

Hands-on work
Basic exercises with each library.

Primitives available with Celery, Dask and PySpark.
Create and supervise workflows with Luigi and Airflow libraries.

Overview of Internet offerings for the Cloud.
Administer a cluster with Ansible.

6 Create task workflows

Hands-on work
Creation of data processing pipelines with each library.

7 Perform calculations in the cloud

Hands-on work
Perform calculations in the Cloud.

Dates and locations

REMOTE CLASS
2026 : 31 Mar., 16 June, 15 Sep.

	Course : Python, parallel programming and distributed computing
	Practical course - 4d - 28h00 - Ref. PYP Price : 2470 CHF E.T.
	1 Parallelism and the Python ecosystem
	2 The basics: asynchronous programming, multithreading and multiprocessing
	3 Distributed computing : Celery, Dask and PySpark
	4 GPU computing
	5 Other parallel programming libraries
	6 Create task workflows
	7 Perform calculations in the cloud

