
Publication date : 02/20/2024

PARTICIPANTS

Developers, web developers,

integrators, technical architects,

technical solutions managers.

PREREQUISITES

Basic knowledge of HTML, languages

such as JavaScript and C, and

command languages such as shell,

Bash or CMD (DOS).

TRAINER QUALIFICATIONS

The experts leading the training are

specialists in the covered subjects.

They have been approved by our

instructional teams for both their

professional knowledge and their

teaching ability, for each course they

teach. They have at least five to ten

years of experience in their field and

hold (or have held) decision-making

positions in companies.

ASSESSMENT TERMS

The trainer evaluates each

participant’s academic progress

throughout the training using

multiple choice, scenarios, hands-on

work and more.

Participants also complete a

placement test before and after the

course to measure the skills they’ve

developed.

Course : WebAssembly,
boosting the performance of
your web applications
Putting binary in the engine of your web browsers

Practical course - 3d - 21h00 - Ref. WAY
Price : 2150 CHF E.T.

 5 / 5

WebAssembly (WASM), an official W3C standard since 2019, makes it possible
to write ultra-fast, ultra-light applications on the web. These applications can
already be written in all kinds of existing source languages: C/C++, Rust, Go,
Java, etc. All they need to do is be ported for access in a browser or secure
container. This hands-on training course provides the keys to developing WASM
code and compiling existing programs in WebAssembly.

Teaching objectives

Understanding the architecture and environment of the W3C
WebAssembly standard
Master the binary instruction set of the WASM language and its
textual representation, the WAT format
Using the JavaScript API to interact with WASM modules

Set up a C/C++ compilation with the Emscripten suite

Developing with the AssemblyScript language

Porting a C/C++ program or library to WASM

At the end of the training, the participant will be able to:

Intended audience
Developers, web developers, integrators, technical architects, technical
solutions managers.

Prerequisites
Basic knowledge of HTML, languages such as JavaScript and C, and command
languages such as shell, Bash or CMD (DOS).

Course schedule

javascript:void(0)

TEACHING AIDS AND TECHNICAL

RESOURCES

• The main teaching aids and

instructional methods used in the

training are audiovisual aids,

documentation and course material,

hands-on application exercises and

corrected exercises for practical

training courses, case studies and

coverage of real cases for training

seminars.

• At the end of each course or

seminar, ORSYS provides

participants with a course evaluation

questionnaire that is analysed by our

instructional teams.

• A check-in sheet for each half-day

of attendance is provided at the end

of the training, along with a course

completion certificate if the trainee

attended the entire session.

TERMS AND DEADLINES

Registration must be completed 24

hours before the start of the training.

ACCESSIBILITY FOR PEOPLE WITH

DISABILITIES

Do you need special accessibility

accommodations? Contact Mrs.

Fosse, Disability Manager, at psh-

accueil@orsys.fr to review your

request and its feasibility.

What issues does WebAssembly address?
History of WASM.
Architecture.
Portability, safety, performance.
Organization of the specification.
Documentation.
WASI, Bytecode Alliance.
Module structure.

Description of a WAT development environment.
Visual Studio Code extensions.
The different module declarations.
Comments, S-expressions.
Functions and the instruction stack.
Import/export a function or other artifact.
Global objects.
Linear memory.
Pointer tables.
The different instructions: loop, conditions, operations, trap.
Start function "start".
The JavaScript interface for using a WASM module.

Runtime requirements.
List of runtimes.
Description of WASI.
Runtime installation.
Run WASM programs with runtimes.

Installation of the Node AssemblyScript module.
Initiating a project with asinit.
Garbage collector and memory.
Programming with objects.
Integration of a WASM library built in AssemblyScript.

1 Introduction to WASM

Hands-on work
Write simple WASM modules using WAT. Compile and run with wat2wasm
and node.

2 WAT text language

Hands-on work
Write and compile a module in WAT offering some basic mathematical
functions (factorial, Fibonacci, etc.). Run the file in Node and in a browser.

3 Runtimes WASM

Hands-on work
Compile a simple program written in Rust in WASM and run it on several
runtimes (wasm3, wasmtime, etc.).

4 AssemblyScript

Hands-on work
WASM module written in AssemblyScript, calculating the colors of the points
of a Mandelbrot fractal, and integration of this library into a front end
visualizing the fractal.

Languages that can be ported to WASM.
General presentation of Emscripten.
Historical background.
Official installation.
Installation under Debian/Ubuntu with apt.
The emcc compiler.
The JavaScript envelope file.
Compilation options.
JavaScript call strategies (ccall, cwrap, etc.).

Compile and configure with Emscripten and Autoconf.
Compile and configure with Emmake and Emconfigure.
Interaction with makefiles.
MODULARIZE, EXPORTED_FUNCTIONS,
EXPORTED_RUNTIME_METHODS compilation options.
The virtual file system.
Environment variables.

5 The Emscripten tool

Hands-on work
Write a simple program in C, compile it in WASM and use it with Node and in
a browser.

6 Bookstore portage

Dates and locations

REMOTE CLASS
2026 : 13 Apr., 24 June, 16 Nov.

	Course : WebAssembly, boosting the performance of your web applications
	Practical course - 3d - 21h00 - Ref. WAY Price : 2150 CHF E.T.
	1 Introduction to WASM
	2 WAT text language
	3 Runtimes WASM
	4 AssemblyScript
	5 The Emscripten tool
	6 Bookstore portage

