@orsys;

YEARS

Formation : C++,
programmation objet

Cours pratique - 5j - 35h00 - Réf. CGE
Prix : 3070 CHF H.T.

NEW

Al'issuedelaformation, le participant sera capable de mettre en ceuvre les
principes fondamentaux de la conception orientée objet et de concevoir des
applications en C++.

@’j Obijectifs pédagogiques
I'issue de laformation, le participant seraen mesure de :

Comprendre la syntaxe et les concepts fondamentaux du C++
Maitriser les ajouts majeurs des normes C++
Appliquer les principes de la conception orientée objet

Ecrire des programmes simples en appliquant les bonnes pratiques
de développement
Utiliser les structures de controéle et les types de données en C++

Manipuler les fichiers et lamémoire de maniére basique

00 0000 »

Public concerné
Développeurs, ingénieurs, chefs de projet proches du développement.

Prérequis
Connaitre les principes de la programmation orientée objet (POO) et disposer
d’une expérience d'un langage de programmation...

Méthodes et moyens pédagogiques

Travaux pratiques

Des études de cas et exercices pratiques.

Méthodes pédagogiques

70% pratique - 30% théorie. Pour optimiser le parcours d’apprentissage, des

modules e-learning peuvent étre fournis avant et aprés la session présentielle ou
laclasse virtuelle, sur simple demande du participant.

PARTICIPANTS
Développeurs, ingénieurs, chefs de

projet proches du développement.

PREREQUIS

Connaitre les principes de la
programmation orientée objet (POO)
et disposer d’une expérience d’'un

langage de programmation...

COMPETENCES DU FORMATEUR
Les experts qui animent la formation
sont des spécialistes des matiéres
abordées. Ils ont été validés par nos
équipes pédagogiques tant sur le plan
des connaissances métiers que sur
celui de la pédagogie, et ce pour
chaque cours gu'ils enseignent. lls ont
au minimum cing a dix années
d’expérience dans leur domaine et
occupent ou ont occupé des postes a

responsabilité en entreprise.

MODALITES D’EVALUATION

Le formateur évalue la progression
pédagogique du participant tout au
long de la formation au moyen de
QCM, mises en situation, travaux
pratiques...

Le participant compléte également un
test de positionnement en amont et
en aval pour valider les compétences

acquises.

Modalités d'évaluation
Le formateur évalue la progression pédagogique du participant tout au longdela
formation au moyen de QCM, mises en situation, travaux pratiques...

Le participant compléte également un test de positionnement en amont et en
aval pour valider les compétences acquises.

Programme de la formation

@ Java, apprendre la programmation orientée objet - OPTION digital

learning préformation

e |ntroduction.
e |esclasses.
e | 'héritage.

Activités digitales

La programmation orientée objet (POO) est un paradigme présent
aujourd’hui dans I'’ensemble des langages de programmation modernes. Ces
concepts permettent de produire un code efficace, puissant et facile a
maintenir. Cette formation en ligne présente les concepts clés dela
programmation orientée objet comme la notion declasse et d'héritage.

@ Rappel sur le fonctionnement du C++

Présentation du langage C++ et de ses évolutions.

Installation des outils (compilateur, IDE, gestionnaire de projet).
Structure d’'un programme C++.

Compilation, exécution, gestion des fichiers source.

Travaux pratiques
Installation et configuration de I'environnement. Structure et syntaxe de
base. Exercices de contréle de flux.

@ Tableaux, chaines et gestion des données

e Tableauxstatiques et dynamiques.
e Chaines de caractéres (C et C++).
e Entrées/sorties standard et fichiers.

Travaux pratiques
Manipulation de données. Exercices sur les structures de données.
Optimisation et bonnes pratiques.

@ Programmation orientée objet

Classes et objets.

Encapsulation, abstraction.
Constructeurs, destructeurs.
Membres statiques et d’instance.

Travaux pratiques
Création de classes simples. Héritage et polymorphisme. Cas d’usage
avancés.

MOYENS PEDAGOGIQUES ET
TECHNIQUES

e Les moyens pédagogiques et les
méthodes d’enseignement utilisés
sont principalement : aides
audiovisuelles, documentation et
support de cours, exercices pratiques
d’application et corrigés des
exercices pour les formations
pratiques, études de cas ou
présentation de cas réels pour les
séminaires de formation.

o A l'issue de chaque formation ou
séminaire, ORSYS fournit aux
participants un questionnaire
d’évaluation du cours qui est ensuite
analysé par nos équipes
pédagogiques.

e Une feuille d’émargement par demi-
journée de présence est fournie en fin
de formation ainsi qu’une attestation
de fin de formation si le participant a
bien assisté a la totalité de la session.

MODALITES ET DELAIS D’ACCES
L'inscription doit étre finalisée 24

heures avant le début de la formation.

ACCESSIBILITE AUX PERSONNES
HANDICAPEES

Pour toute question ou besoin relatif
al’accessibilité, vous pouvez joindre
notre équipe PSH par e-mail a

I'adresse psh-accueil@orsys.fr.

@ Testing et optimisation

e Tests unitaires avec frameworks C++ (Catch2, GoogleTest).
e Techniques d’optimisation des performances.

e Stratégies de gestion mémoire.

Travaux pratiques

Tests unitaires avancés. Optimisation des performances. Déploiement
optimisé.

@ Gestion de lamémoire en C++

Allocation dynamique (new, delete).

Pointeurs, références, pointeurs intelligents (smart pointers).
Fuites de mémaoire, gestion des ressources (RAII).

Bonnes pratiques de gestion mémoire.

Travaux pratiques

Manipulation de la mémoire. Atelier RAll et gestion des ressources.
Optimisation mémoire.

@ Introduction alaSTL (Standard Template Library)

PrésentationdelaSTL et de ses avantages.
Conteneurs principaux: vector, list, map, set.
Itérateurs et parcours de collections.
Algorithmes standards (sort, find, etc.).

Travaux pratiques

Manipulation des conteneurs STL. Exercices sur les algorithmes STL.
Optimisation et bonnes pratiques STL.

Patterns avancés et conception

e Patterns de conception classiques (Singleton, Factory, Observer, etc.).
e Utilisation des templates pour les patterns génériques.

e Bonnes pratiques de conception orientée objet.

Travaux pratiques

Implémentation de patterns. Patterns avancés et templates. Cas d’'usage et
revue de code.

@ Testing avancé et optimisation

e Tests unitaires avancés (mocks, tests paramétrés).

e Optimisation des performances (profiling, analyse de code).
e Stratégies derefactoring.

Travaux pratiques
Tests avancés. Optimisation et refactoring. Déploiement et synthése.

Programmation générique et templates

Templates de fonctions et de classes.

Spécialisation et surcharge de templates.

Templates variadiques et métaprogrammation de base.
Bonnes pratiques et pieges a éviter.

Travaux pratiques

Créationdetemplates. Métaprogrammation et templates avancés.
Optimisation et bonnes pratiques.

@ Gestion des exceptions et robustesse

Gestion des exceptions (try, catch, throw).
Exceptions personnalisées.

Bonnes pratiques de gestion d’erreurs.
Impact sur la performance et lalisibilité.

Travaux pratiques

Manipulation des exceptions. Exercices sur la robustesse. Bonnes pratiques
etrevue de code.

@ Intégration de projets complexes

Organisation d’un projet multifichiers.
Utilisation de CMake ou d’autres outils de build.
Gestion des dépendances et modularité.
Documentation et tests automatisés.

Travaux pratiques

Structuration d’un projet. Intégration et gestion des dépendances. Cas
d’'usage et revue de projet.

@ Testing, ClI/CD et synthése

Tests unitaires et d’intégration avancés.
Introduction al’intégration continue (Cl/CD).
Outils de build et de test automatisés.
Synthése des acquis de lajournée.

Travaux pratiques

Mise en place de tests automatisés. CI/CD et automatisation. Synthése et
pland’action.

Programmation avancée en C++

Lambda expressions, auto, nullptr, move semantics.
Boucles for-range, initialisation uniforme.

Smart pointers avancés, gestion des ressources.
Fonctions anonymes et closures.

Travaux pratiques

Exercices sur les nouveautés du langage. Ateliers sur la modernisation du
code. Optimisation avancée.

@ Sécurité et robustesse en C++

Sécurité mémoire (buffer overflow, use-after-free).
Bonnes pratiques de validation des entrées.
Gestion des acces concurrents (mutex, threads).
Outils d’analyse de sécurité.

Travaux pratiques

Analyse de vulnérabilités. Exercices sur la concurrence. Bonnes pratiques et
revue de code.

Performance et multithreading

Introduction au multithreading en C++.

Utilisation des threads, futures, promises.
Synchronisation et gestion des ressources partagées.
Outils de profiling et d’analyse de performance.

Travaux pratiques

Mise en ceuvre du multithreading. Optimisation de la concurrence. Cas
d’usage et revue de code.

@ Testing, monitoring et synthése

Tests de performance et de charge.

Outils de monitoring (Valgrind, perf, etc.).
Analyse des logs et détection d’anomalies.
Synthése des acquis de lajournée.

Travaux pratiques
Tests de performance. Monitoring et analyse. Synthése et plan d’action.

Projet de synthese

Analyse d’'un cahier des charges.

Conception orientée objet et modulaire.
Développement d’'une application C++ compléte.
Intégration des tests, optimisation et documentation.

Travaux pratiques
Réalisation du projet. Soutenance et retours.

Consolidation des bonnes pratiques

Bonnes pratiques de développement C++.
Gestion des erreurs et exceptions.
Documentation technique et utilisateur.
Planification de la maintenance et del’évolution.

Travaux pratiques

Revue de code croisée. Atelier documentation et maintenance. Synthése et
bonnes pratiques.

Plan d’action personnel et cloture

Définition d’'objectifs personnels.

Identification des ressources et outils pour progresser.
Planification de la mise en pratique.

Evaluation a chaud et feedback.

Travaux pratiques

Elaboration du plan d’action personnel. Evaluation et feedback. Cloture et
perspectives.

@ UML, apprendre a modéliser avec les diagrammes - OPTION digital
learning post-formation

* Notions fondamentales.
e Diagrammes structurels.
e Diagrammes comportementaux.

Activités digitales

Cetteformation en ligne présente les fondamentaux de la conception
orientée objet, les différents diagrammes UML, structurels et
comportementaux, ainsi que leurs objectifs et leurs usages. A travers un
exemple de conception fil rouge, I'application UML pour spécifier, visualiser
et documenter efficacement un systéme informatique sera mise en pratique.

Dates et lieux

CLASSE A DISTANCE
2026:30mars, 22 juin, 5oct., 14 déc.

	Formation : C++, programmation objet
	Cours pratique - 5j - 35h00 - Réf. CGE Prix : 3070 CHF H.T.
	1 Java, apprendre la programmation orientée objet – OPTION digital learning préformation
	2 Rappel sur le fonctionnement du C++
	3 Tableaux, chaînes et gestion des données
	4 Programmation orientée objet
	5 Testing et optimisation
	6 Gestion de la mémoire en C++
	7 Introduction à la STL (Standard Template Library)
	8 Patterns avancés et conception
	9 Testing avancé et optimisation
	10 Programmation générique et templates
	11 Gestion des exceptions et robustesse
	12 Intégration de projets complexes
	13 Testing, CI/CD et synthèse
	14 Programmation avancée en C++
	15 Sécurité et robustesse en C++
	16 Performance et multithreading
	17 Testing, monitoring et synthèse
	18 Projet de synthèse
	19 Consolidation des bonnes pratiques
	20 Plan d’action personnel et clôture
	21 UML, apprendre à modéliser avec les diagrammes - OPTION digital learning post-formation

