
PARTICIPANTS

Développeurs, chargés de

développement d’applications

informatiques, chefs de projet

proches du développement…

PRÉREQUIS

Connaître les principes de la

programmation orientée objet et

disposer d'une expérience sur un

langage de programmation dans le

développement d'applications.

COMPÉTENCES DU FORMATEUR

Les experts qui animent la formation

sont des spécialistes des matières

abordées. Ils ont été validés par nos

équipes pédagogiques tant sur le plan

des connaissances métiers que sur

celui de la pédagogie, et ce pour

chaque cours qu’ils enseignent. Ils ont

au minimum cinq à dix années

d’expérience dans leur domaine et

occupent ou ont occupé des postes à

responsabilité en entreprise.

MODALITÉS D’ÉVALUATION

Le formateur évalue la progression

pédagogique du participant tout au

long de la formation au moyen de

QCM, mises en situation, travaux

pratiques…

Le participant complète également un

test de positionnement en amont et

en aval pour valider les compétences

acquises.

Formation : Java, les
fondamentaux de la
programmation
Cours pratique - 5j - 35h00 - Réf. LJB
Prix : 3070 CHF H.T.

À l'issue de la formation, le participant sera capable d'utiliser le langage Java et
les technologies associées pour créer une application.

Objectifs pédagogiques

Connaître les concepts de base du langage Java et maîtriser sa
syntaxe
Utiliser les bibliothèques et API

Comprendre les concepts de la programmation orientée objet en
Java
Créer une application en Java

À l’issue de la formation, le participant sera en mesure de :

Public concerné
Développeurs, chargés de développement d’applications informatiques, chefs de
projet proches du développement…

Prérequis
Connaître les principes de la programmation orientée objet et disposer d'une
expérience sur un langage de programmation dans le développement
d'applications.

Méthodes et moyens pédagogiques
Quiz, jeux en binômes ou en groupe, moments d'échanges, mise en situation,
travaux pratiques intensifs, environnement de développement intégré.

60% pratique – 40% théorie. Pour optimiser le parcours d’apprentissage, des
modules e-learning peuvent être fournis avant et après la session présentielle ou
la classe virtuelle, sur simple demande du participant.

Méthodes pédagogiques

Modalités d'évaluation

MOYENS PÉDAGOGIQUES ET

TECHNIQUES

• Les moyens pédagogiques et les

méthodes d’enseignement utilisés

sont principalement : aides

audiovisuelles, documentation et

support de cours, exercices pratiques

d’application et corrigés des

exercices pour les formations

pratiques, études de cas ou

présentation de cas réels pour les

séminaires de formation.

• À l’issue de chaque formation ou

séminaire, ORSYS fournit aux

participants un questionnaire

d’évaluation du cours qui est ensuite

analysé par nos équipes

pédagogiques.

• Une feuille d’émargement par demi-

journée de présence est fournie en fin

de formation ainsi qu’une attestation

de fin de formation si le participant a

bien assisté à la totalité de la session.

MODALITÉS ET DÉLAIS D’ACCÈS

L’inscription doit être finalisée 24

heures avant le début de la formation.

ACCESSIBILITÉ AUX PERSONNES

HANDICAPÉES

Pour toute question ou besoin relatif

à l’accessibilité, vous pouvez joindre

notre équipe PSH par e-mail à

l’adresse psh-accueil@orsys.fr.

Modalités d'évaluation
Le formateur évalue la progression pédagogique du participant tout au long de la
formation au moyen de QCM, mises en situation, travaux pratiques…

Le participant complète également un test de positionnement en amont et en
aval pour valider les compétences acquises.

Programme de la formation

Introduction à l’algorithmique.
Les instructions de base en pseudo-code.

Les principes généraux de la modélisation et de la programmation objet.
L'abstraction et l'encapsulation : les interfaces.
Les différentes formes d'héritage, le polymorphisme.
Introduction à la modélisation UML : le modèle statique, le modèle
dynamique, le modèle de coopération, les scénarios.

Les variables : déclaration et typage.
La définition des champs et des méthodes.
Les expressions et instructions de contrôle.
Les tableaux et types énumérés, l'autoboxing.
Les unités de compilation et packages.

Les imports statiques.
Les entrées/sorties clavier.
L'API java.time et conversion de dates.

1 Algorithmique – Raisonner avant de concevoir - OPTION digital learning

préformation

Activités digitales
Dans cette formation en ligne, vous apprendrez à raisonner avant de
concevoir un programme en découvrant les bases de l’algorithmique. Vous
étudierez notamment les instructions fondamentales en pseudo-code.

2 Les techniques objet

Travaux pratiques
Spécification UML d'une étude de cas qui sera l'un des fils directeurs des
exercices suivants.

3 Les constructions de base du langage

Travaux pratiques
Suite d'exercices simples permettant la prise en main de l'environnement de
développement.

4 Application des textes et responsabilités

Travaux pratiques
Réalisation d'un programme simple et utilisation des packages.

Les classes et les objets.
Les champs, les méthodes, les constructeurs.
L'autoréférence et les champs/méthodes statiques.
Les méthodes à nombre variable d'arguments.
Les aspects méthodologiques : la conception des classes.

Les différentes formes d'héritage : l'extension et l'implémentation.
Les interfaces et l'implémentation des interfaces.
Le polymorphisme et sa mise en œuvre.

L'extension, la définition des classes dérivées, les constructeurs, les
références.
La construction de hiérarchies de classes, la factorisation de code : les
classes abstraites.
L'utilisation simultanée de l'implémentation et de l'extension.

Les blocs try, la génération des exceptions.
L'algorithme de sélection du catch().
Les exceptions contrôlées et non contrôlées.
Utilisation du bloc finally.

Notion de généricité et intérêt de la généricité.
L'interface collection et types de listes.
Les maps.

5 La définition et l'instanciation des classes

Travaux pratiques
Programmation de l'étude de cas en sous-groupes.

6 L'héritage (partie 1)

Travaux pratiques
Conception et construction d'une hiérarchie de classes simples.

7 L'héritage (partie 2)

Travaux pratiques
Mise en place du polymorphisme et de la généricité dans l'étude de cas.
Construction de hiérarchies de classes et d'interfaces.

8 Les exceptions

Travaux pratiques
Introduction des exceptions dans l'étude de cas.

9 Collections et généricité

Travaux pratiques
Utilisation d'une classe générique et mise en œuvre des listes et map.

Notion d'interface fonctionnelle.
API java.util.fonction, les quatre catégories d'interfaces fonctionnelles.
Les collections, les méthodes forEach et removeIf.
Syntaxe et utilisation des expressions lambda.

Relation avec la programmation fonctionnelle.
Les opérateurs essentiels : filter, map, reduce.
Notion d'opérations terminales et intermédiaires.
Simplification d'algorithmes.

Principe et intérêt de Java Database Connectivity (JDBC).
Architecture JDBC et pilotes.
Configuration de l'environnement.

Notion de Connection, de Driver.
Création et fermeture de connexions.
Gestion des ressources.

Notion de Statement et de ResultSet.
Exécution de requêtes SELECT, INSERT, UPDATE, DELETE.
Parcours et traitement des résultats.

Statement et PreparedStatement, différences importantes.
Prévention des injections SQL.
Optimisation des performances.

10 La programmation fonctionnelle

Travaux pratiques
Utilisation d'expressions lambda avec une interface fonctionnelle.
Application dans les listes et collections.

11 Les streams

Travaux pratiques
Application des streams pour faire des traitements sur une collection.

12 Introduction à JDBC

Travaux pratiques
Installation et configuration d'un pilote JDBC. Première connexion à une
base de données.

13 Connexions et requêtes de base

Travaux pratiques
Établissement de connexions sécurisées.

14 Statement et ResultSet

Travaux pratiques
Mise en œuvre de requêtes basiques avec JDBC.

15 PreparedStatement et bonnes pratiques

Travaux pratiques
Conversion de Statement vers PreparedStatement. Implémentation de
requêtes paramétrées.

Notion de transactions et bonnes pratiques.
Commit et rollback.
Gestion des erreurs dans les transactions.

Évolution de Java depuis Java 8.
Les nouvelles API et fonctionnalités.
Records, pattern matching, switch expressions.
Text Blocks et API améliorées.
Virtual Threads et autres améliorations.

Utilisation des outils de débogage IDE.
Techniques de débogage avancées.
Logging et monitoring.
Bonnes pratiques de développement.

Profiling et analyse de performance.
Gestion mémoire et Garbage Collector.

Optimisations courantes (arguments JVM).

16 Gestion des transactions

Travaux pratiques
Mise en œuvre de transactions complexes.

17 Les nouveautés Java (versions récentes)

Travaux pratiques
Refactoring d'ancien code avec les nouvelles fonctionnalités. Exercices
pratiques sur les records et pattern matching. Expérimentation avec les text
blocks.

18 Outils de débogage et monitoring

Travaux pratiques
Session de débogage pratique sur l'étude de cas.

19 Optimisation et performance (1/2)

Travaux pratiques
Analyse de performance sur l'étude de cas.

20 Optimisation et performance (2/2)

Travaux pratiques
Mise en place d'optimisations.

Stratégies de test modernes (TDD, BDD).
JUnit 5 et ses nouvelles fonctionnalités.
Tests paramétrés, tests d'intégration.
Mocking avancé avec Mockito.
Couverture de code et analyse statique.
Tests de performance et de charge.

Analyse des besoins et conception.
Architecture de l'application.
Mise en place de la structure du projet.

Implémentation des fonctionnalités core.
Intégration base de données.
Gestion des exceptions.

Finalisation du développement.
Tests et débogage.
Documentation.

Introduction à JUnit et configuration.
Comprendre et utiliser les annotations Junit.
Structuration des tests et bonnes pratiques.
Tests avancés avec Junit.
Approfondir la maîtrise de JUnit.

21 Tests et qualité du code

Travaux pratiques
Mise en place d'une suite de tests complète pour l'étude de cas. Configuration
d'outils d'analyse de code.

22 Projet intégrateur (partie 1)

Travaux pratiques
Conception de l'application finale.

23 Projet intégrateur (partie 2)

Travaux pratiques
Intégration des concepts dans l'application finale.

24 Projet intégrateur (partie 3)

Travaux pratiques
Tests et validation de l'application.

25 Junit, maîtriser les tests unitaires en Java — OPTION digital learning

post-formation

Activités digitales
Dans cette formation en ligne, vous découvrirez comment maîtriser JUnit 5
pour écrire, organiser et exécuter des tests unitaires efficaces en Java. Après
une introduction aux concepts fondamentaux, vous apprendrez à structurer
les tests, utiliser les annotations clés, gérer les exceptions, créer des tests
paramétrés et des suites de tests, ainsi qu’à intégrer JUnit avec Maven ou
Gradle. Chaque notion sera illustrée par des exemples pratiques comme le
test d’une calculatrice ou d’un inventaire.

Dates et lieux

CLASSE À DISTANCE
2026 : 23 mars, 15 juin, 28 sep., 7 déc.

	Formation : Java, les fondamentaux de la programmation
	Cours pratique - 5j - 35h00 - Réf. LJB Prix : 3070 CHF H.T.
	1 Algorithmique – Raisonner avant de concevoir - OPTION digital learning préformation
	2 Les techniques objet
	3 Les constructions de base du langage
	4 Application des textes et responsabilités
	5 La définition et l'instanciation des classes
	6 L'héritage (partie 1)
	7 L'héritage (partie 2)
	8 Les exceptions
	9 Collections et généricité
	10 La programmation fonctionnelle
	11 Les streams
	12 Introduction à JDBC
	13 Connexions et requêtes de base
	14 Statement et ResultSet
	15 PreparedStatement et bonnes pratiques
	16 Gestion des transactions
	17 Les nouveautés Java (versions récentes)
	18 Outils de débogage et monitoring
	19 Optimisation et performance (1/2)
	20 Optimisation et performance (2/2)
	21 Tests et qualité du code
	22 Projet intégrateur (partie 1)
	23 Projet intégrateur (partie 2)
	24 Projet intégrateur (partie 3)
	25 Junit, maîtriser les tests unitaires en Java — OPTION digital learning post-formation

