NOUS CONTACTER - 📞 +33 (0)1 49 07 73 73    espace pro ESPACE PRO     inscription formation orsys S'INSCRIRE     drapeau francais   drapeau anglais
Nos domaines de formation :
Toutes nos formations IA, Machine Learning, analyse de données

Formation Deep Learning par la pratique

4 / 5
Stage pratique
nouveau cours
Durée : 3 jours
Réf : DPL
Prix  2019 : 1990 € H.T.
Pauses et déjeuners offerts
  • Programme
  • Participants / Prérequis
  • Intra / sur-mesure
  • avis vérifiés
Programme

L'Intelligence Artificielle, après avoir bouleversé de nombreux domaines scientifiques, a commencé à révolutionner un grand nombre de secteurs économiques. L'objet de cette formation est d'apporter une prise en main pratique du Deep Learning et de ses différents domaines d'application.

Objectifs pédagogiques

  • Comprendre l'évolution des réseaux de neurones et les raisons du succès actuel du Deep Learning
  • Utiliser les bibliothèques de Deep Learning les plus populaires
  • Comprendre les principes de conception, les outils de diagnostic et les effets des différents verrous et leviers
  • Acquérir de l'expérience pratique sur plusieurs problèmes réels
PROGRAMME DE FORMATION

Introduction

  • Créer un premier graphe et l’exécuter dans une session.
  • Cycle de vie de la valeur d’un nœud.
  • Manipuler des matrices. Régression linéaire. Descente de gradient.
  • Fournir des données à l’algorithme d’entraînement.
  • Enregistrer et restaurer des modèles. Visualiser le graphe et les courbes d’apprentissage.
  • Portées de noms. Partage des variables.

Démonstration
Présentation des exemples de Machine Learning en classification et régression.

Introduction aux réseaux de neurones artificiels

  • Du biologique à l’artificiel.
  • Entraîner un PMC (perceptron multicouche) avec une API TensorFlow de haut niveau.
  • Entraîner un PMC (perceptron multicouche) avec TensorFlow de base.
  • Régler précisément les hyperparamètres d’un réseau de neurones.

Entraînement de réseaux de neurones profonds

  • Problèmes de disparition et d’explosion des gradients.
  • Réutiliser des couches pré-entraînées.
  • Optimiseurs plus rapides.
  • Éviter le sur-ajustement grâce à la régularisation.
  • Recommandations pratiques.

Travaux pratiques
Mise en œuvre d'un réseau de neurones à la manière du framework TensorFlow.

Réseaux de neurones convolutifs

  • L’architecture du cortex visuel.
  • Couche de convolution.
  • Couche de pooling.
  • Architectures de CNN.

Travaux pratiques
Mise en œuvre des CNN en utilisant des jeux de données variés.

Deep Learning avec Keras

  • Régression logistique avec Keras.
  • Perceptron avec Keras.
  • Réseaux de neurones convolutifs avec Keras.

Travaux pratiques
Mise en œuvre de Keras en utilisant des jeux de données variés.

Réseaux de neurones récurrents

  • Neurones récurrents.
  • RNR de base avec TensorFlow.
  • Entraîner des RNR. RNR profonds.
  • Cellule LSTM. Cellule GRU.
  • Traitement automatique du langage naturel.

Travaux pratiques
Mise en œuvre des RNN en utilisant des jeux de données variés.

Autoencodeurs

  • Représentations efficaces des données.
  • ACP avec un autoencodeur linéaire sous-complet.
  • Autoencodeurs empilés.
  • Pré-entraînement non supervisé avec des autoencodeurs empilés.
  • Autoencodeurs débruiteurs. Autoencodeurs épars. Autoencodeurs variationnels. Autres autoencodeurs.

Travaux pratiques
Mise en œuvre d'autoencodeurs en utilisant des jeux de données variés.

Participants / Prérequis

» Participants

Ingénieurs/Chefs de projet IA, consultants IA et toute personne souhaitant découvrir les techniques Deep Learning dans la résolution de problèmes industriels.

» Prérequis

Bonnes connaissances en statistiques. Bonnes connaissances du Machine Learning, connaissances équivalentes à celles apportées par le cours Machine Learning, méthodes et solutions. Expérience requise.
Intra / sur-mesure

Demande de devis intra-entreprise
(réponse sous 48h)

Vos coordonnées

En cochant cette case, j’atteste avoir lu et accepté les conditions liées à l’usage de mes données dans le cadre de la réglementation sur la protection des données à caractère personnel (RGPD).
Vous pouvez à tout moment modifier l’usage de vos données et exercer vos droits en envoyant un email à l’adresse rgpd@orsys.fr
En cochant cette case, j’accepte de recevoir les communications à vocation commerciale et promotionnelle de la part d’ORSYS Formation*
Vous pouvez à tout moment vous désinscrire en utilisant le lien de désabonnement inclus dans nos communications.
* Les participants inscrits à nos sessions de formation sont également susceptibles de recevoir nos communications avec la possibilité de se désabonner à tout moment.
Avis vérifiés
picto avis vérifiés
Marc W. 11/02/2019
4 / 5
Passer plus de temps sur les sujets CNN, RNN, Autoencodeurs et moins sur les sujets de la première journée avec une communication des prérequis en avance

Schockaert C. 11/02/2019
4 / 5
certain exercices etaient peut etre trop long. Le partage d experience pour cloturer le cours était par contre parfait.

Pierre J. 11/02/2019
4 / 5
Contenu très dense même sur 3 jours mais complet

Salvatore R. 11/02/2019
5 / 5
Formation très bien. Attention à bien prévenir les intervenants qu'un bon niveau en python est nécessaire.
Avis client 4 / 5

Les avis client sont issus des feuilles d’évaluation de fin de formation. La note est calculée à partir de l’ensemble des avis datant de moins de 12 mois.

Pour vous inscrire

Cliquez sur la ville, puis sur la date de votre choix.
[-]
PARIS

Horaires

Les cours ont lieu de 9h à 12h30 et de 14h à 17h30.
Les participants sont accueillis à partir de 8h45.
Pour les stages pratiques de 4 ou 5 jours, les sessions se terminent à 15h30 le dernier jour.
Filières métiers