Nos solutions de formation à distance et en présentiel éligibles au dispositif FNE-Formation 100% financées En savoir plus
ORSYS formation
NOUS CONTACTER - +33 (0)1 49 07 73 73
NOUS CONTACTER - 📞 +33 (0)1 49 07 73 73    espace pro ESPACE CLIENT     inscription formation orsys S'INSCRIRE     drapeau francais   drapeau anglais

Nos formations :

Toutes nos formations IA, Machine Learning, analyse de données

Formation Machine Learning, état de l'art

4,4 / 5
Séminaire
Best
Durée : 2 jours
Réf : MLE
Prix  2020 : 1990 € H.T.
Pauses et déjeuners offerts
  • Programme
  • Participants / Prérequis
  • Intra / sur-mesure
  • avis vérifiés
Programme

Ce séminaire vise à prendre conscience des enjeux liés au traitement de la donnée par l'Intelligence Artificielle, et en particulier par les algorithmes du Machine Learning. Il montre aux décideurs, par une approche vulgarisatrice et interactive, les mécanismes du Machine Learning, les solutions concrètes et la démarche de projet à appliquer selon les cas d'usages en entreprise.

Objectifs pédagogiques

  • Comprendre les enjeux de l'utilisation du Machine Learning dans l'entreprise
  • Positionner le Machine Learning dans la chaîne de traitement de la donnée
  • Distinguer les compétences nécessaires ou les profils à recruter
  • Identifier les clés de réussite d'un projet autour du Machine Learning

Méthodes pédagogiques

Illustration par des cas concrets. Présentation des principaux cas d'usage selon les secteurs d'activités (Automobile, industrie, biens de consommation, finance, santé énergie, agriculture, transports, télécommunication...).
PROGRAMME DE FORMATION

Histoire du Machine Learning et contexte du Big Data

  • Replacer à leur échelle les concepts d'Intelligence Artificielle, apprentissage automatique (machine learning)...
  • Le lien avec les mathématiques, les statistiques (inférentielles), le data mining et la data science.
  • Passer de l'analyse descriptive à l'analyse prédictive puis prescriptive.
  • Les applications du Machine Learning (moteurs de recherche, détection des spams, lecture des chèques).
  • La typologie des algorithmes de Dominique CARDON.
  • La communauté Data Science et les challenges Kaggle (ex. de Netflix).

Etude de cas
Etudes d'applications concrètes du Machine Learning (moteurs de recherche, détection des spams, lecture des chèques).

Les données à disposition : collecte et préparation

  • Données structurées, semi-structurées et non structurées.
  • Nature statistique des données (qualitatives ou quantitatives).
  • Objets connectés (IoT) et streaming.
  • Opportunités et limites de l'Open Data.
  • Identification des corrélations, problème de la multicolinéarité.
  • Réduction des dimensions par Analyse des Composantes Principales.
  • Détection et correction des valeurs aberrantes.
  • Les ETL (Extract Transform Load).
  • Le Web scraping.

Démonstration
Démonstration d'un ETL (Extract Transform Load). Recueil de données Web.

Les outils du marché pour le traitement de la donnée et le Machine Learning

  • Les logiciels traditionnels (SAS, SPSS, Stata...) et leur ouverture à l'Open Source.
  • Choisir entre les deux leaders Open Source : Python et R.
  • Plateformes Cloud (Azure, AWS, Google Cloud Platform) et solutions SaaS (IBM Watson, Dataïku).
  • Nouveaux postes en entreprises : data engineer, data scientist, data analyst, etc.
  • Associer les bonnes compétences à ces différents outils.
  • Les API en ligne (IBM Watson, Microsoft Cortana Intelligence...).
  • Les chatbots (agents conversationnels).

Démonstration
Démonstration d'un chatbot (agent conversationnel) et d'Azure Machine Learning.

Les différents types d'apprentissage en Machine Learning

  • Apprentissage supervisé : répéter un exemple.
  • Apprentissage non supervisé : découvrir les données.
  • Online (Machine) Learning par opposition aux techniques batch.
  • Reinforcement learning : optimisation d'une récompense.
  • Autres types d'apprentissage (par transfert, séquentiel, actif...).
  • Illustrations (moteurs de recommandation...).

Démonstration
Démonstrations sur les différents types d'apprentissage Machine Learning possibles.

Les algorithmes du Machine Learning

  • Régression linéaire simple et multiple. Limites des approches linéaires.
  • Régression polynomiale (LASSO). Séries temporelles.
  • Régression logistique et applications en scoring.
  • Classification hiérarchique et non hiérarchique (KMeans).
  • Classification par arbres de décision ou approche Naïve Bayes.
  • Ramdom Forest (développement des arbres de décision).
  • Gradiant Boosting. Réseaux de neurones. Machine à support de vecteurs.
  • Deep Learning : exemples et raisons du succès actuel.
  • Text Mining : analyse des corpus de données textuelles.

Démonstration
Démonstration des différents algorithmes de base sous R ou Python.

Procédure d'entraînement et d'évaluation des algorithmes

  • Séparation du jeu de données : entraînement, test et validation.
  • Techniques de bootstrap (bagging).
  • Exemple de la validation croisée.
  • Définition d'une métrique de performance.
  • Descente de gradient stochastique (minimisation de la métrique).
  • Courbes ROC et de lift pour évaluer et comparer les algorithmes.
  • Matrice de confusion : faux positifs et faux négatifs.

Démonstration
Démonstration du choix du meilleur algorithme.

Mise en production d'un algorithme de Machine Learning

  • Description d'une plateforme Big Data.
  • Principe de fonctionnement des API.
  • Du développement à la mise en production.
  • Stratégie de maintenance corrective et évolutive.
  • Evaluation du coût de fonctionnement en production.

Démonstration
Démonstration d'API de géolocalisation et d'analyse de sentiments.

Aspects éthiques et juridiques liés à l'Intelligence Artificielle

  • Missions de la CNIL et évolutions à venir.
  • Question du droit d'accès aux données personnelles.
  • Question de la propriété intellectuelle des algorithmes.
  • Nouveaux rôles dans l'entreprise : Chief Data Officer et Data Protection Officer.
  • Question de l'impartialité des algorithmes.
  • Attention au biais de confirmation.
  • Les secteurs et les métiers touchés par l'automatisation.

Réflexion collective
Réflexion en commun pour identifier les clés de réussite.

Participants / Prérequis

» Participants

Dirigeants d'entreprise (CEO, COO, CFO, SG, DRH...), DSI, les CDO, responsables informatiques, consultants, responsables de projets Big Data.

» Prérequis

Posséder une culture informatique de base. La connaissance des bases des mathématiques statistiques est un plus.
Intra / sur-mesure

Demande de devis intra-entreprise
(réponse sous 48h)

Vos coordonnées

En cochant cette case, j’atteste avoir lu et accepté les conditions liées à l’usage de mes données dans le cadre de la réglementation sur la protection des données à caractère personnel (RGPD).
Vous pouvez à tout moment modifier l’usage de vos données et exercer vos droits en envoyant un email à l’adresse rgpd@orsys.fr
En cochant cette case, j’accepte de recevoir les communications à vocation commerciale et promotionnelle de la part d’ORSYS Formation*
Vous pouvez à tout moment vous désinscrire en utilisant le lien de désabonnement inclus dans nos communications.
* Les participants inscrits à nos sessions de formation sont également susceptibles de recevoir nos communications avec la possibilité de se désabonner à tout moment.
Avis vérifiés
picto avis vérifiés
Jean S. 23/07/2020
4 / 5
Beaucoup de choses parcourues en 2jours, 400 slides passées au pas de course! L'important ne ressort pas du tout et on perd du temps sur des formules qui ne serviront pas opérationnellement ou des détails. Le support de formation manque de synthèse et au final on cherche l'essentiel à retenir tellement on est noyé. La formatrice maitrisait bien son sujet mais souffrait aussi de ce contenu trop chargé sans avoir le temps d[

SANDRAZ J. 23/07/2020
4 / 5
Beaucoup trop de slides parcourues en 2 jours (plus de 400 !) Trop de sujets d'importance disparate (temps perdu sur des calculs qu'on ne reverra jamais plutôt que d'approfondir le fond) Au final l'important est noyé dans le moins important et on a du mal à en extraire une synthèse claire. Sinon très bonne animation de la formation

Neagoe R. 23/07/2020
4 / 5
Beaucoup de contenu très varie. On a traite tous les points qui se trouvait dans les slides. Marwa nous a répondu a toutes les questions. J'avoue qu'on a traite des nombreux sujets en un temps très court donc je dois approfondir pour pouvoir comprendre certains aspects.

Nicolas T. 18/06/2020
4 / 5
Je trouve le contenu éthique ainsi RGPD léger à mon goût. Merci pour la formation ! Contenu intéressant

Sylvain B. 18/06/2020
4 / 5
Je suis satisfait du contenu même si certaines parties sont techniques, cela permet tout de même d'avoir une bonne vue d'ensemble du Machine learning et des applications possibles.

Emmanuel B. 18/06/2020
5 / 5
Clélia a très bien démystifier le Machine Learning et ses méthodes avec des exemples progressifs parlant.

Marcel B. 16/01/2020
4 / 5
Très bon aperçu du ML

ABBANA M. 16/01/2020
4 / 5
Le contenu est intéressant, la pédagogie est un peu trop scolaire par moment

Roger S. 16/01/2020
5 / 5
Le stage correspond à mes attentes. Très bonne vulgarisation pour un candide.

Aymeric P. 16/01/2020
5 / 5
Très bien, bon rythme Juste quelques questions par vraiment répondues

Xavier S. 16/01/2020
5 / 5
Sujet parfaitement maîtrisé et très bien présenté

Nicolas B. 16/01/2020
5 / 5
formation complète, bien illustrée.

Gerard P. 16/01/2020
5 / 5
Correspond à notre demande

Philippe B. 16/01/2020
5 / 5
programme bien élaboré, très bonne connaissance et maitrise du fonctionnel

FABRICE O. 16/01/2020
5 / 5
Très bien. J aurais voulu un peu plus de mise en situation sur des cas concrets mais c est difficile dans le temps imparti

Cédric L. 28/11/2019
5 / 5
Très bien. Bon parcours global des différentes approches.

Stéphane M. 28/11/2019
5 / 5
Excellente formation. Excellente animatrice.

Christian C. 28/11/2019
3 / 5
Sentiment d'une formation mal préparée avec un support de cours papier inadapté (200 pages - gaspillage de papier incompréhensible à notre époque) animateur "débutant sur le séminaire" - difficile de s'accrocher au début par manque de fil conducteur -

Alexandre O. 28/11/2019
4 / 5
J'aurais souhaité plus d'approfondissements à travers des exemples concrets Le support de formation est trop long, cependant il reste un peu générique De mon point de vue on pourrait réduire la partie introductive pour rester concentré sur le deep mearning à travers des exemples commentés et des outils permettant de comprendre le fonctionnement réel au delà des principes théoriques. Un exemple d[quot

Nelly V. 28/11/2019
4 / 5
Plan de la formation pas clair. Support de cours pas assez détaillé pour le comprendre sans l'aide du formateur
Avis client 4,4 / 5

Les avis client sont issus des feuilles d’évaluation de fin de formation. La note est calculée à partir de l’ensemble des avis datant de moins de 12 mois.

CLASSE A DISTANCE

En inter et en intra-entreprise
Inscrivez-vous ou contactez-nous !

Pour vous inscrire

Cliquez sur la ville, puis sur la date de votre choix.
[+]
CLASSE A DISTANCE
[+]
PARIS

Horaires

Les cours ont lieu de 9h à 12h30 et de 14h à 17h30.
Les participants sont accueillis à partir de 8h45.
Pour les stages pratiques de 4 ou 5 jours, les sessions se terminent à 15h30 le dernier jour.
En poursuivant votre navigation, vous acceptez l’utilisation de cookies nous permettant de vous proposer des offres correspondant à vos centres d’intérêt.
En savoir plus sur l’usage des cookies…   ✖ Fermer
linkedin orsys
twitter orsys
it! orsys
instagram orsys
pinterest orsys
facebook orsys
youtube orsys