> Formations > Technologies numériques > Développement logiciel > Python, C, C++ > Formation Python, initiation au traitement de données économiques et scientifiques > Formations > Technologies numériques > Formation Python, initiation au traitement de données économiques et scientifiques
Nouvelle formation

Python, initiation au traitement de données économiques et scientifiques

Débuter avec Python et ses librairies de calculs et d'analyses

Python, initiation au traitement de données économiques et scientifiques

Débuter avec Python et ses librairies de calculs et d'analyses
Télécharger au format pdf Partager cette formation par e-mail 2


Python est devenu en quelques années le principal langage de programmation pour tous les métiers liés aux calculs numériques et à l’analyse de données. Cette montée en puissance est devenue telle que plus aucune discipline scientifique ne semble pouvoir, ni même vouloir lui échapper. Alors lancez-vous avec Python !


Inter
Intra
Sur mesure

Cours pratique en présentiel ou en classe à distance

Réf. PYK
Prix : 1990 € H.T.
  3j - 21h
Pauses-café et
déjeuners offerts




Python est devenu en quelques années le principal langage de programmation pour tous les métiers liés aux calculs numériques et à l’analyse de données. Cette montée en puissance est devenue telle que plus aucune discipline scientifique ne semble pouvoir, ni même vouloir lui échapper. Alors lancez-vous avec Python !

Objectifs pédagogiques
À l’issue de la formation, le participant sera en mesure de :
  • Savoir programmer avec le langage Python
  • Posséder une vue d’ensemble de l’écosystème scientifique de Python
  • Connaître les librairies scientifiques incontournables pour la science des données

Public concerné
Ingénieurs, développeurs, chercheurs, data scientists, data analysts et toute personne désireuse de se former à l'univers scientifique de Python.

Prérequis
Pratique d’un langage de programmation ou connaissance de l’algorithmique.

Programme de la formation

Initiation au langage Python

  • Les principaux types de données : chaînes, booléennes, nombres, listes, tuples et dictionnaires.
  • Les structures de contrôles : les boucles for et while, le test if/elif/else.
  • Les fonctions : création, passage de paramètres, valeurs par défaut, arguments variables.
  • Créer et utiliser des librairies.
  • Les principaux pièges de Python : types mutable et unmutable, affectation par référence/adresse.
Travaux pratiques
Installation de Python avec la distribution Anaconda, utilisation d’un IDE, petits exercices d’algorithmique pour prendre en main le langage. Manipulation de dates.

Compléments sur le langage

  • Comprendre la syntaxe orientée objet.
  • Savoir créer une classe : attributs de classe, d’instance, méthodes, fonctions spéciales.
  • Lecture et écriture de fichiers au format texte.
  • Utiliser les librairies standard : bases de données relationnelles et expressions régulières.
Travaux pratiques
Connexion à une base de données relationnelle et analyse de logs avec les expressions régulières, afin de créer un fichier CSV, pour son exploitation par les librairies scientifiques.

Présentation de l'écosystème Python scientifique

  • Panorama de l’écosystème scientifique de Python : les librairies incontournables.
  • Savoir où trouver de nouvelles librairies et juger de leur pérennité.
  • Les principaux outils et logiciels open source pour la data science.
  • Pourquoi utiliser une distribution scientifique comme Anaconda.
  • Comprendre l’intérêt d’un environnement virtuel et savoir l’utiliser.
  • L’interpréteur iPython et le serveur Jupyter.
  • Les bonnes pratiques pour bien démarrer son projet de data science avec Python.
  • Les formats de fichiers scientifiques et les librairies pour les manipuler.
Travaux pratiques
Mise en place de l’environnement de développement. Création d’un environnement virtuel, export et duplication d’un environnement, utiliser les notebooks Jupyter.

La SciPy Stack

  • Pandas : l’analyse de données tabulaires (CSV, Excel...), statistiques, pivots, filtres, recherche…
  • Matplotlib : la librairie de visualisation de données incontournable pour bien démarrer.
  • Le socle de librairies scientifiques incontournables sur lequel sont basées toutes les autres : la SciPy Stack.
  • Numpy : calcul numérique et algèbre linéaire (les vecteurs, matrices, images).
  • Scipy, basée sur Numpy pour : les statistiques, les analyses fonctionnelles et géospatiales, le traitement du signal...
Travaux pratiques
Traitement d’images avec Numpy. Premiers tracés. Analyses statistiques de fichiers CSV. Premiers éléments de cartographie. Transformées de Fourier.


Modalités pratiques
Exercice
De nombreux exercices sont réalisés pour illustrer les sujets.
Méthodes pédagogiques;
Pédagogie active, des démonstrations sont mises en œuvre par le formateur pour une mise en pratique plus rapide par les participants.

Modalités d'évaluation
Le formateur évalue la progression pédagogique du participant tout au long de la formation au moyen de QCM, mises en situation, travaux pratiques…
Le participant complète également un test de positionnement en amont et en aval pour valider les compétences acquises.

Solutions de financement
Pour trouver la meilleure solution de financement adaptée à votre situation : contactez votre conseiller formation.
Il vous aidera à choisir parmi les solutions suivantes :
  • Le plan de développement des compétences de votre entreprise : rapprochez-vous de votre service RH.
  • Le dispositif FNE-Formation.
  • L’OPCO (opérateurs de compétences) de votre entreprise.
  • Pôle Emploi sous réserve de l’acceptation de votre dossier par votre conseiller Pôle Emploi.
  • Le plan de développement des compétences de votre entreprise : rapprochez-vous de votre service RH.
  • Le dispositif FNE-Formation.
  • L’OPCO (opérateurs de compétences) de votre entreprise.
  • Pôle Emploi sous réserve de l’acceptation de votre dossier par votre conseiller Pôle Emploi.

Avis clients
4,3 / 5
Les avis clients sont issus des évaluations de fin de formation. La note est calculée à partir de l’ensemble des évaluations datant de moins de 12 mois. Seules celles avec un commentaire textuel sont affichées.
ANTOINE K.
29/11/21
1 / 5

Formatrice certainement compétente mais un peu cassante par moments. Le groupe était hétérogène car Orsys n’a pas fait le travail de valider avec les participants les prérequis nécessaires. Du coup, ça a été pénible pour tout le monde. Orsys doit vraiment revoir sa préparation des cours. En comparaison, j’ai fait une formation d’initiation de deux jours en juin avec un autre organisme : c’[eac
MANUEL H.
29/11/21
3 / 5

Formatrice très compétente. Malheureusement, vu l’hétérogénéité des niveaux, la formation à distance présente de problèmes sérieux. Je recommanderais de ne pas faire cette formation à distance, sauf à avoir déjà un très bon niveau initial en Python. Pour ma part, j’ai eu la vision d’ensemble que je recherchais.
DELEAU F.
29/11/21
3 / 5

Bonne vue d’ensemble Bon rappel et illustration des bases




Horaires
En présentiel, les cours ont lieu de 9h à 12h30 et de 14h à 17h30.
Les participants sont accueillis à partir de 8h45. Les pauses et déjeuners sont offerts.
En classe à distance, la formation démarre à partir de 9h.
Pour les stages pratiques de 4 ou 5 jours, quelle que soit la modalité, les sessions se terminent à 15h30 le dernier jour.

Dates et lieux
Pour vous inscrire, sélectionnez la ville et la date de votre choix.
Du 1 au 3 août 2022
FR
Lille
S’inscrire
Du 1 au 3 août 2022
FR
Classe à distance
S’inscrire
Du 1 au 3 août 2022 *
FR
Paris La Défense
Session garantie
S’inscrire
Du 8 au 10 août 2022
FR
Strasbourg
S’inscrire
Du 8 au 10 août 2022
FR
Nantes
S’inscrire
Du 29 au 31 août 2022 *
FR
Lyon
Session garantie
S’inscrire
Du 5 au 7 septembre 2022
FR
Lille
S’inscrire
Du 5 au 7 septembre 2022
FR
Paris La Défense
S’inscrire
Du 5 au 7 septembre 2022
FR
Classe à distance
S’inscrire
Du 7 au 9 septembre 2022
FR
Bordeaux
S’inscrire
Du 7 au 9 septembre 2022
FR
Toulouse
S’inscrire
Du 19 au 21 septembre 2022
FR
Lyon
S’inscrire
Du 28 au 30 septembre 2022
FR
Nantes
S’inscrire
Du 28 au 30 septembre 2022
FR
Strasbourg
S’inscrire
Du 12 au 14 octobre 2022
FR
Sophia-Antipolis
S’inscrire
Du 12 au 14 octobre 2022
FR
Aix-en-Provence
S’inscrire
Du 17 au 19 octobre 2022
FR
Classe à distance
S’inscrire
Du 17 au 19 octobre 2022
FR
Paris La Défense
S’inscrire
Du 7 au 9 novembre 2022
FR
Classe à distance
S’inscrire
Du 7 au 9 novembre 2022
FR
Aix-en-Provence
S’inscrire
Du 7 au 9 novembre 2022
FR
Toulouse
S’inscrire
Du 7 au 9 novembre 2022
FR
Sophia-Antipolis
S’inscrire
Du 7 au 9 novembre 2022
FR
Bordeaux
S’inscrire
Du 7 au 9 novembre 2022
FR
Lille
S’inscrire
Du 14 au 16 novembre 2022
FR
Paris La Défense
S’inscrire
Du 21 au 23 novembre 2022
FR
Lyon
S’inscrire
Du 19 au 21 décembre 2022
FR
Nantes
S’inscrire
Du 19 au 21 décembre 2022
FR
Strasbourg
S’inscrire