> Formations > Technologies numériques > Langages et développement > Python > Formation Python, programmation parallèle et calcul distribué > Formations > Technologies numériques > Formation Python, programmation parallèle et calcul distribué

Formation : Python, programmation parallèle et calcul distribué

Python, programmation parallèle et calcul distribué




Le succès de Python pour les applications scientifiques (Data science, Big Data, Machine Learning...) requiert de plus en plus de capacités de calculs. Ce cours vous initie au paradigme du calcul parallèle/distribué, des concepts de base aux techniques et librairies les plus avancées de l’écosystème Python.


INTER
INTRA
SUR MESURE

Cours pratique en présentiel ou à distance
Disponible en anglais, à la demande

Réf. PYP
  4j - 28h00
Prix : 2440 € H.T.
Pauses-café et
déjeuners offerts




Le succès de Python pour les applications scientifiques (Data science, Big Data, Machine Learning...) requiert de plus en plus de capacités de calculs. Ce cours vous initie au paradigme du calcul parallèle/distribué, des concepts de base aux techniques et librairies les plus avancées de l’écosystème Python.


Objectifs pédagogiques
À l’issue de la formation, le participant sera en mesure de :
Acquérir les concepts de la programmation parallèle
Savoir identifier les portions d’un programme qui sont parallélisables
Posséder une vision claire de l’écosystème de calcul parallèle pour Python
Développer des applications parallélisées (programmation asynchrone, multithreading, multiprocessing, calcul distribué)
Savoir exécuter des calculs sur les GPU des cartes graphiques
Savoir exécuter un workflow de tâches dans le Cloud

Public concerné
Développeurs, data scientists, data analysts, chefs de projets.

Prérequis
Bonnes connaissances du langage Python et si possible de ses librairies scientifiques Numpy, Scipy et Pandas.
Vérifiez que vous avez les prérequis nécessaires pour profiter pleinement de cette formation en faisant  ce test.

Méthodes et moyens pédagogiques
Méthodes pédagogiques
70% du temps est consacré à la mise en pratique des concepts et librairies présentées. L’utilisation des notebooks Jupyter et l’exécution de code dans le Cloud apportent une réelle interactivité.

Modalités d'évaluation
Le formateur évalue la progression pédagogique du participant tout au long de la formation au moyen de QCM, mises en situation, travaux pratiques…
Le participant complète également un test de positionnement en amont et en aval pour valider les compétences acquises.

Programme de la formation

1
Le parallélisme et son écosystème Python

  • Les différentes formes du parallélisme et ses architectures (CPU, GPU, ASIC, FPGA, NUMA, OpenMP, MPI... ).
  • Contraintes et limites.
  • L’écosystème de calcul parallèle pour Python.
Travaux pratiques
Profiling d’un programme (cProfile, Kcachegrind et pyprof2calltree). Compiler un programme C avec les instructions SIMD. Bien installer Numpy : comment obtenir un gain de vitesse x40.

2
Les bases : programmation asynchrone, multithreading et multiprocessing

  • Programmation asynchrone : générateurs et asyncio.
  • Multithreading : accès concurrents, verrous…
  • Limites du multithreading en Python.
  • Multiprocessing : mémoire partagée, pools de process, conditions...
  • Premier cluster de calcul distribué avec les Managers et Proxy.
Travaux pratiques
Réalisation d'une même chaîne de traitement de données avec chaque modèle et d’un cluster de calcul distribué entre les machines des participants.

3
Calcul distribué : Celery, Dask et PySpark

  • Concepts et configuration.
  • Mise en œuvre de chaque librairie.
Travaux pratiques
Plusieurs exercices seront abordés (calcul matriciel, traitement d’image/texte, Bitcoin, Machine Learning...). Utilisation des notebooks Zeppelin.

4
Calculer sur GPU

  • Les architectures GPU : kernels, mémoire, threads...
  • Les librairies OpenCL et CUDA.
  • Mise en œuvre des librairies Scikit-cuda, PyCUDA et Numba.
Travaux pratiques
Calcul matriciel et traitement d’images. Machine Learning avec la librairie mxnet : Neural Art. Compilation Just In Time.

5
Autres librairies de programmation parallèle

  • Message Passing Interface avec MPI4py.
  • PyOpenCL : implémenter un code avec des systèmes hétérogènes.
  • Joblib : Les pipelines légers.
  • Greenlets : vers un meilleur multithreading.
  • Pythran : Compiler vos programmes Python sur architectures multicœurs et vectorisées.
Travaux pratiques
Exercices de base avec chaque librairie.

6
Créer des workflows de tâches

  • Les primitives disponibles avec Celery, Dask et PySpark.
  • Créer et superviser des workflows avec les librairies Luigi et Airflow.
Travaux pratiques
Création de pipelines de traitements de données avec chaque librairie.

7
Exécuter des calculs dans le Cloud

  • Panorama de l’offre Internet pour le Cloud.
  • Administrer un cluster avec Ansible.
Travaux pratiques
Effectuer des calculs dans le Cloud.


Solutions de financement
Plusieurs solutions existent pour financer votre formation et dépendent de votre situation professionnelle.
Découvrez-les sur notre page Comment financer sa formation ou contactez votre conseiller formation.

Horaires
les cours ont lieu de 9h à 12h30 et de 14h à 17h30.
Les participants sont accueillis à partir de 8h45. Les pauses et déjeuners sont offerts.
Pour les stages pratiques de 4 ou 5 jours, quelle que soit la modalité, les sessions se terminent à 16h le dernier jour.

Dates et lieux
Sélectionnez votre lieu ou optez pour la classe à distance puis choisissez votre date.
Classe à distance

Dernières places
Date garantie en présentiel ou à distance
Session garantie




PARTICIPANTS
Futurs managers et responsables d’équipe souhaitant structurer leur pratique managériale

PRÉREQUIS
Aucun

COMPÉTENCES DU FORMATEUR
Les experts qui animent la formation sont des spécialistes des matières abordées. Ils ont été validés par nos équipes pédagogiques tant sur le plan des connaissances métiers que sur celui de la pédagogie, et ce pour chaque cours qu’ils enseignent. Ils ont au minimum cinq à dix années d’expérience dans leur domaine et occupent ou ont occupé des postes à responsabilité en entreprise.

MODALITÉS D’ÉVALUATION
Le formateur évalue la progression pédagogique du participant tout au long de la formation au moyen de QCM, mises en situation, travaux pratiques… Le participant complète également un test de positionnement en amont et en aval pour valider les compétences acquises.

MOYENS PÉDAGOGIQUES ET TECHNIQUES
• Les moyens pédagogiques et les méthodes d’enseignement utilisés sont principalement : aides audiovisuelles, documentation et support de cours, exercices pratiques d’application et corrigés des exercices pour les stages pratiques, études de cas ou présentation de cas réels pour les séminaires de formation. • À l’issue de chaque stage ou séminaire, ORSYS fournit aux participants un questionnaire d’évaluation du cours qui est ensuite analysé par nos équipes pédagogiques. • Une feuille d’émargement par demi-journée de présence est fournie en fin de formation ainsi qu’une attestation de fin de formation si le stagiaire a bien assisté à la totalité de la session.

MODALITÉS ET DÉLAIS D’ACCÈS
L’inscription doit être finalisée 24 heures avant le début de la formation.

ACCESSIBILITÉ AUX PERSONNES HANDICAPÉES
Pour toute question ou besoin relatif à l’accessibilité, vous pouvez joindre notre équipe PSH par e-mail à l'adresse psh-accueil@orsys.fr.