> Formations > Technologies numériques > Intelligence Artificielle, Big Data > IA, Machine Learning, analyse de données > Formation Microsoft Azure Machine Learning, développer et exploiter des algorithmes > Formations > Technologies numériques > Formation Microsoft Azure Machine Learning, développer et exploiter des algorithmes

Formation : Microsoft Azure Machine Learning, développer et exploiter des algorithmes

Microsoft Azure Machine Learning, développer et exploiter des algorithmes




Les algorithmes s'imposent comme l'un des sujets prédominants du Big Data. Ce sont les outils des méthodes exploratoires, explicatives ou prédictives que l'on applique aux données, dans le cadre du Machine Learning. Ce cours vous permettra d'acquérir les compétences nécessaires à l'utilisation d'Azure Machine Learning.


INTER
INTRA
SUR MESURE

Cours pratique en présentiel ou à distance
Disponible en anglais, à la demande

Réf. AZL
  3j - 21h00
Prix : 2330 € H.T.
Pauses-café et
déjeuners offerts




Les algorithmes s'imposent comme l'un des sujets prédominants du Big Data. Ce sont les outils des méthodes exploratoires, explicatives ou prédictives que l'on applique aux données, dans le cadre du Machine Learning. Ce cours vous permettra d'acquérir les compétences nécessaires à l'utilisation d'Azure Machine Learning.


Objectifs pédagogiques
À l’issue de la formation, le participant sera en mesure de :
Prendre en main l'interface d'Azure Machine Learning
Choisir parmi plusieurs algorithmes équivalents selon une problématique
Découvrir les bases des langages R et Python pour augmenter les capacités d'Azure Machine Learning
Exploiter une expérience au travers d'un Web Service

Public concerné
Data Scientists, data miners, statisticiens, développeurs en charge de la mise en production des modèles.

Prérequis
Connaissances de base en statistiques (centrage, dispersion, corrélation, tests d'hypothèses). Des notions de programmation ou d'algorithmique peuvent être utiles.
Vérifiez que vous avez les prérequis nécessaires pour profiter pleinement de cette formation en faisant  ce test.

Méthodes et moyens pédagogiques
Exercice
Cas pratiques sur des données réalistes et volumineuses

Modalités d'évaluation
Le formateur évalue la progression pédagogique du participant tout au long de la formation au moyen de QCM, mises en situation, travaux pratiques…
Le participant complète également un test de positionnement en amont et en aval pour valider les compétences acquises.

Programme de la formation

1
Prise en main de l'interface Azure Machine Learning

  • L'offre Azure. Facturation à l'usage.
  • Prise en main de l'interface Machine Learning Studio.
  • Créer un dataset. Se connecter à une source de données.
  • Construire une expérience de ML.
  • Définir un Web Service prédictif.
  • La Gallery Cortana Intelligence.
Travaux pratiques
Prise en main de l'interface Azure ML. Création d'un dataset. Définition d'un Web Service prédictif.

2
Créer une expérience de Machine Learning

  • Utiliser l'arbre de choix des algorithmes.
  • Détecter les valeurs aberrantes.
  • Choisir les variables de l'algorithme (features sélection).
  • Initialiser le modèle, entraîner le modèle, évaluer le modèle.
  • Reformer un modèle prédictif.
  • Transformer les variables de l’algorithme (features engineering).
  • Limiter les lignes d’un jeu de données.
Travaux pratiques
Évaluer des différents algorithmes à l'aide de la courbe ROC.

3
Savoir paramétrer les grandes familles d'algorithmes

  • Algorithmes de clustering (approche non supervisée).
  • Algorithmes de régression linéaire.
  • Algorithmes de régression logistique ou ordinale.
  • Algorithmes de classification (approche supervisée) binaire ou one-versus-all.
  • Méthodes ensemblistes (forêt, jungle…).
  • Packages R et Python. Le framework Vowpall Wabbit.
  • Paramétrage des algorithmes.
Travaux pratiques
Paramétrer des familles d'algorithmes avec R/Python.

4
Traiter d'autres types de données

  • Analyser les séries temporelles, détecter les anomalies.
  • Analyse de données textuelles avec les packages R.
  • Appliquer un algorithme Vowpal Wabbit (Latent Dirichlet Analysis).
  • Exploiter les images avec notebooks Jupyter.
Travaux pratiques
Traitement des données texte ou image.

5
Découvrir les nouveaux outils autour d'Azure Machine Learning

  • Nouvelles briques Azure pour le ML (Experimentation / Model Management).
  • Inspection et préparation des données (transformations par exemple, transformations avancées).
  • Mise en œuvre des instances Azure Machine Learning.
  • Suivi des exécutions et des métriques d’évaluation.
  • Scénarios de déploiement (local/Spark/Docker/AKS).
Travaux pratiques
Préparation de données et transformations avancées.


Solutions de financement
Plusieurs solutions existent pour financer votre formation et dépendent de votre situation professionnelle.
Découvrez-les sur notre page Comment financer sa formation ou contactez votre conseiller formation.

Horaires
les cours ont lieu de 9h à 12h30 et de 14h à 17h30.
Les participants sont accueillis à partir de 8h45. Les pauses et déjeuners sont offerts.
Pour les stages pratiques de 4 ou 5 jours, quelle que soit la modalité, les sessions se terminent à 16h le dernier jour.

Dates et lieux

Dernières places
Date garantie en présentiel ou à distance
Session garantie
Du 17 au 19 septembre 2025
FR
Classe à distance
S’inscrire




PARTICIPANTS
Futurs managers et responsables d’équipe souhaitant structurer leur pratique managériale

PRÉREQUIS
Aucun

COMPÉTENCES DU FORMATEUR
Les experts qui animent la formation sont des spécialistes des matières abordées. Ils ont été validés par nos équipes pédagogiques tant sur le plan des connaissances métiers que sur celui de la pédagogie, et ce pour chaque cours qu’ils enseignent. Ils ont au minimum cinq à dix années d’expérience dans leur domaine et occupent ou ont occupé des postes à responsabilité en entreprise.

MODALITÉS D’ÉVALUATION
Le formateur évalue la progression pédagogique du participant tout au long de la formation au moyen de QCM, mises en situation, travaux pratiques… Le participant complète également un test de positionnement en amont et en aval pour valider les compétences acquises.

MOYENS PÉDAGOGIQUES ET TECHNIQUES
• Les moyens pédagogiques et les méthodes d’enseignement utilisés sont principalement : aides audiovisuelles, documentation et support de cours, exercices pratiques d’application et corrigés des exercices pour les stages pratiques, études de cas ou présentation de cas réels pour les séminaires de formation. • À l’issue de chaque stage ou séminaire, ORSYS fournit aux participants un questionnaire d’évaluation du cours qui est ensuite analysé par nos équipes pédagogiques. • Une feuille d’émargement par demi-journée de présence est fournie en fin de formation ainsi qu’une attestation de fin de formation si le stagiaire a bien assisté à la totalité de la session.

MODALITÉS ET DÉLAIS D’ACCÈS
L’inscription doit être finalisée 24 heures avant le début de la formation.

ACCESSIBILITÉ AUX PERSONNES HANDICAPÉES
Pour toute question ou besoin relatif à l’accessibilité, vous pouvez joindre notre équipe PSH par e-mail à l'adresse psh-accueil@orsys.fr.