Venez en toute sécurité dans nos centres ! Voir notre dispositif sanitaire

> Formations > Technologies numériques > Big Data, Intelligence Artificielle > Big Data, NoSQL > Formation Big Data Analytics avec R > Formations > Technologies numériques > Formation Big Data Analytics avec R

Big Data Analytics avec R

modélisation et représentation des données

Big Data Analytics avec R

modélisation et représentation des données
Télécharger au format pdf Partager cette formation par e-mail


Le Big Data Analytics suppose la maîtrise de techniques fondamentales de traitement des données : méthodes statistiques, classifications, régressions, ACP... Ce stage pratique vous montrera, à partir de données concrètes, comment utiliser ces techniques pour construire puis évaluer des modèles à l'aide du langage R.


Inter
Intra
Sur mesure

Cours pratique en présentiel ou en classe à distance

Réf : DTA
Prix : 2690 € HT
  4j - 28h
Pauses-café et
déjeuners offerts




Le Big Data Analytics suppose la maîtrise de techniques fondamentales de traitement des données : méthodes statistiques, classifications, régressions, ACP... Ce stage pratique vous montrera, à partir de données concrètes, comment utiliser ces techniques pour construire puis évaluer des modèles à l'aide du langage R.

Objectifs pédagogiques
À l’issue de la formation, le participant sera en mesure de :
  • Comprendre le principe de la modélisation statistique
  • Choisir entre la régression et la classification en fonction du type de données
  • Évaluer les performances prédictives d'un algorithme
  • Créer des sélections et des classements dans de grands volumes de données pour dégager des tendances

Public concerné
Responsables Infocentre (Datamining, Marketing, Qualité...), utilisateurs et gestionnaires métiers de bases de données.

Prérequis
Connaissances de base en statistiques et en R, ou avoir suivi les stages "Statistiques, maîtriser les fondamentaux" (Réf. STA) et "Environnement R, traitement de données et analyse ... " (Réf. TDA).

Modalités d'évaluation
Le formateur évalue la progression pédagogique du participant tout au long de la formation au moyen de QCM, mises en situation, travaux pratiques…
Le participant complète également un test de positionnement en amont et en aval pour valider les compétences acquises.

Programme de la formation

Rappels au langage R

  • Les types de données dans R.
  • Importation-exportation de données.
  • Techniques pour tracer des courbes et des graphiques.
Mise en situation
Prise en main des scripts et Notebooks.

Analyse en composantes

  • Analyse en Composantes Principales.
  • Analyse Factorielle des Correspondances.
  • Analyse des Correspondances Multiples.
  • Analyse Factorielle pour Données Mixtes.
  • Classification Hiérarchique sur Composantes Principales.
Travaux pratiques
Mise en œuvre de la diminution du nombre des variables et identification des facteurs sous-jacents des dimensions associées à une variabilité importante.

La modélisation

  • Les étapes de construction d'un modèle.
  • Les algorithmes supervisés et non supervisés.
  • Le choix entre la régression et la classification.
Travaux pratiques
Mise en place d'échantillonnage de jeux de donnes. Effectuer des tests d'évaluations sur plusieurs modèles fournis.

Procédures d'évaluation de modèles

  • Les techniques de ré-échantillonnage en jeu d'apprentissage, de validation et de test.
  • Test de représentativité des données d'apprentissage.
  • Mesures de performance des modèles prédictifs.
  • Matrice de confusion, de coût et la courbe ROC et AUC.
Travaux pratiques
Mise en place d'échantillonnage de jeux de donnes. Effectuer des tests d'évaluations sur plusieurs modèles fournis.

Les algorithmes non supervisés

  • Le clustering hiérarchique.
  • Le clustering non hiérarchique.
  • Les approches mixtes.
Travaux pratiques
Traitements de clustering non supervisés sur plusieurs jeux de données.

Les algorithmes supervisés

  • Le principe de régression linéaire univariée.
  • La régression multivariée.
  • La régression polynomiale.
  • La régression régularisée.
  • Le Naive Bayes.
  • La régression logistique.
Travaux pratiques
Mise en œuvre des régressions et des classifications sur plusieurs types de données.

Analyse de données textuelles

  • Collecte et prétraitement des données textuelles.
  • Extraction d'entités primaires, d'entités nommées et résolution référentielle.
  • Étiquetage grammatical, analyse syntaxique, analyse sémantique.
  • Lemmatisation. Représentation vectorielle des textes. Pondération TF-IDF.


Solutions de financement
Pour trouver la meilleure solution de financement adaptée à votre situation : contactez votre conseiller formation.
Il vous aidera à choisir parmi les solutions suivantes :
  • Le plan de développement des compétences de votre entreprise : rapprochez-vous de votre service RH.
  • Le dispositif FNE-Formation.
  • L’OPCO (opérateurs de compétences) de votre entreprise.
  • Pôle Emploi sous réserve de l’acceptation de votre dossier par votre conseiller Pôle Emploi.
  • Le plan de développement des compétences de votre entreprise : rapprochez-vous de votre service RH.
  • Le dispositif FNE-Formation.
  • L’OPCO (opérateurs de compétences) de votre entreprise.
  • Pôle Emploi sous réserve de l’acceptation de votre dossier par votre conseiller Pôle Emploi.


Avis clients
4,6 / 5
Les avis clients sont issus des évaluations de fin de formation. La note est calculée à partir de l’ensemble des évaluations datant de moins de 12 mois. Seules celles avec un commentaire textuel sont affichées.
BRICE D.
14/12/21
3 / 5

Excellent formateur mais clairement pas assez de temps sur les exercices, que nous ne faisions pas réellement puisqu’on suivait ce qu’il écrivait.
BENJAMIN B.
10/08/21
5 / 5

Très complète avec de bon rappels et des accès aux formation internet intéressantes
FLORINE M.
10/08/21
3 / 5

Excellente pédagogie et adaptation de Maxime. Point noir : Datacamp. Morcellement important qui empêche d’avoir la ligne directrice en tête. Vidéos et exercices en anglais qui vont que je suis passée à côté d’un certain nombre de choses.




Horaires
En présentiel, les cours ont lieu de 9h à 12h30 et de 14h à 17h30.
Les participants sont accueillis à partir de 8h45. Les pauses et déjeuners sont offerts.
En classe à distance, la formation démarre à partir de 9h.
Pour les stages pratiques de 4 ou 5 jours, quelle que soit la modalité, les sessions se terminent à 15h30 le dernier jour.

Dates et lieux
Pour vous inscrire, sélectionnez la ville et la date de votre choix.
Du 8 au 11 mars 2022
Classe à distance
S’inscrire
Du 8 au 11 mars 2022
Paris La Défense
S’inscrire
Du 7 au 10 juin 2022
Paris La Défense
S’inscrire
Du 7 au 10 juin 2022
Classe à distance
S’inscrire
Du 9 au 12 août 2022
Classe à distance
S’inscrire
Du 9 au 12 août 2022
Paris La Défense
S’inscrire
Du 15 au 18 novembre 2022
Paris La Défense
S’inscrire
Du 15 au 18 novembre 2022
Classe à distance
S’inscrire