Course : Autonomous Agents and Collective Intelligence, designing Distributed Ecosystems with LLM

Design and deploy scalable multi-agent systems integrating LLMs

Practical course - 3d - 21h00 - Ref. LLM
Price : 2010 € E.T.

Autonomous Agents and Collective Intelligence, designing Distributed Ecosystems with LLM

Design and deploy scalable multi-agent systems integrating LLMs


New course

Suivez cette formation pour concevoir et déployer des écosystèmes multi-agents intelligents. Vous apprendrez à orchestrer, coordonner et superviser des agents autonomes capables de résoudre des tâches complexes et distribuées, grâce à des exercices pratiques et des projets concrets.


INTER
IN-HOUSE
CUSTOM

Practical course in person or remote class
Disponible en anglais, à la demande

Ref. LLM
  3d - 21h00
2010 € E.T.




Suivez cette formation pour concevoir et déployer des écosystèmes multi-agents intelligents. Vous apprendrez à orchestrer, coordonner et superviser des agents autonomes capables de résoudre des tâches complexes et distribuées, grâce à des exercices pratiques et des projets concrets.


Teaching objectives
At the end of the training, the participant will be able to:
Identify the key concepts of intelligent agents and LLM-driven architectures.
Compare symbolic agents, LLM-powered and co-pilots to choose the right solution.
Implement a LangChain agent with tools, memory and reasoning chains.
Design a coordinated multi-agent system using roles, communication and workflows.
Apply ontologies and semantic reasoning to standardize and share knowledge.
Orchestrate and supervise multi-agent ecosystems, ensuring performance, security and scalability.

Intended audience
Developers, software architects, AI engineers, researchers, R&D managers and any professional involved in complex projects in Python, LLM or distributed systems.

Prerequisites
Python language skills. Good knowledge of LLMs. Basic knowledge of LangChain. Good knowledge of software and agent-oriented architecture.

Course schedule

1
Foundations of intelligent agents and the role of LLMs

  • Definition: agent, autonomy, environment, perception, action, objectives.
  • Symbolic agent vs. LLM-powered. Difference between agents, chains and co-pilots.
  • Difference between agents, chains and co-pilots.
  • Overview of agent architectures (BDI, planners, prompt-based).
  • Language model as a planning and reasoning engine.
  • Limitations: hallucinations, coordination, computational cost.

2
LangChain agents and tool-based reasoning

  • Architecture of a LangChain agent.
  • Components: tools, memory, output parser, AgentExecutor.
  • Examples of tools: calculation, search, files, APIs.
  • Management of reasoning chains and the environment.
Hands-on work
Creation of a simple agent with tools. Agent that answers questions, uses a search tool, performs a calculation. Management of reasoning chains and environment.

3
Multi-agent theories and frameworks

  • Agent types: specialized, hierarchical, competitive, collaborative.
  • Different approaches to coordination: by task, by role, by message.
  • Communication models: blackboard, publish/subscribe, direct dialog (JSON).
  • Some frameworks: LangChain Multi-Agent, CrewAI, AutoGen, ChatDev, AutoGPT.
  • Structuring complex workflows: delegation, roles, dependencies

4
Ontologies and semantic reasoning

  • Standardizing shared knowledge.
  • Integrating business ontologies into a multi-agent system.
  • Reasoning from knowledge graphs (RDF, Neo4j).
  • Long memory for inter-agent coordination.
Hands-on work
Conception d’un système à 3 agents spécialisés. Exemple : analyste de données, rédacteur de rapport, vérificateur juridique. Coordination par rôle et par objectif. Utilisation de mémoire longue.

5
Planning, supervision and safety

  • Implementing chain-of-thought for LLM planning.
  • The limits of LLMs: noise, instability, infinite loops.
  • Control strategies: scoring, pruning, critical agents.
  • Supervision and monitoring of interactions (logging, replay, auditability).
  • Governance and security: sandboxing, compliance, critical agent or human-in-the-loop (HITL).


Dates and locations
Select your location or opt for the remote class then choose your date.
Remote class

Dernières places
Date garantie en présentiel ou à distance
Session garantie

REMOTE CLASS
2026 : 9 Mar., 15 June, 14 Sep., 23 Nov.

PARIS LA DÉFENSE
2026 : 2 Mar., 8 June, 7 Sep., 16 Nov.