Publication date : 05/23/2024

Course : Certifying course: Integrating artificial intelligence models and services

Skills block of the RNCP 37827BC02 title

Practical course - 24d - 168h00 - Ref. ZIS
Price : 10980 € E.T.

Certifying course: Integrating artificial intelligence models and services

Skills block of the RNCP 37827BC02 title



This course is the second skills block in the state-approved RNCP Level 6 (Bac +3) "Artificial Intelligence Developer" qualification. It covers a full range of skills, from technical watch to the continuous delivery chain. You'll master the organization of intelligence, the identification and parameterization of AI services, API development, integration into applications, model monitoring with specific metrics, automated test programming and the implementation of a continuous delivery chain.


INTER
IN-HOUSE
CUSTOM

Practical course in person or remote class
Available in English on request

Ref. ZIS
  24d - 168h00
10980 € E.T.




This course is the second skills block in the state-approved RNCP Level 6 (Bac +3) "Artificial Intelligence Developer" qualification. It covers a full range of skills, from technical watch to the continuous delivery chain. You'll master the organization of intelligence, the identification and parameterization of AI services, API development, integration into applications, model monitoring with specific metrics, automated test programming and the implementation of a continuous delivery chain.


Teaching objectives
At the end of the training, the participant will be able to:
Organize and conduct a technical and regulatory watch
Identify pre-existing AI services based on the expression of need for AI functionalities
Setting up an artificial intelligence service
Develop an API exposing an artificial intelligence model
Integrate the API of an artificial intelligence model or service into an application
Monitor an artificial intelligence model using current and project-specific metrics
Program automated tests of an artificial intelligence model
Creating a continuous delivery chain for an artificial intelligence model

Intended audience
Anyone wishing to integrate artificial intelligence models and services.

Prerequisites
Hold a level 5 diploma (Bac +2), with knowledge of object programming and SQL. If this is not the case, hold a level 4 diploma (BAC) and 3 years' experience in application development, subject to validation of the VAP file by the certifier.

Certification
Le bloc de compétences est validé à travers un cas pratique et une mise en situation. Pour le cas pratique, l’évaluation doit se faire à partir de l’expression d’un besoin réel ou fictif de fonctionnalités d’intelligence artificielle. Ce besoin peut résulter d’une commande client comme d’une sollicitation interne d’un collaborateur data scientist par exemple. Le cas pratique évalué a pour but l’installation et la configuration du service d’IA préconisé. Évaluation basée sur la correction d’un rapport professionnel et d’un oral individuel. Pour la mise en situation, l’évaluation doit se faire dans un contexte réel ou fictif de réalisation d’un service d’intelligence artificielle à partir d’un modèle fourni. Le projet évalué a pour but la mise en service (packaging, monitorage, test…) du modèle fourni, et son intégration dans une application existante. Évaluation basée sur la correction d’un rapport professionnel et d’un oral individuel intégrant une démonstration du projet.

Course schedule

1
Implement effective competitive intelligence

  • Identify the different types of monitoring.
  • Design a research plan.
  • Mastering field and documentary tools for gathering information.
  • Implement monitoring and analysis tools.
  • Use information to optimize competitive positioning.

2
Managing a Benchmarking project

  • Identify the different types of benchmarking.
  • Draw up project specifications.
  • Identify sources of information and partners.
  • Analyze the data collected.
  • Communicating best practices to teams.

3
Descriptive statistics, introduction

  • Understand the benefits of descriptive statistics.
  • Understand how to process raw data.
  • Understand basic statistical tools and how to calculate them.
  • Pose a statistical problem and find the appropriate method.

4
Machine learning methods and solutions

  • Understand the different learning models.
  • Model a practical problem in abstract form.
  • Identify relevant learning methods to solve a problem.
  • Apply and evaluate the methods identified on a problem.
  • Link different learning techniques.

5
Continuous integration, best practices

  • Understand the components and principles of continuous integration.
  • Operate a version control manager.
  • Understand the mechanics of software construction and the associated Build tools.
  • Configure a project on a continuous integration server.
  • Decipher the main metrics of code analysis tools.
  • Understand the role of artifact repositories and configuration management.

6
Machine Learning with Python from POC to production

  • Set up the various preprocessing stages with Python.
  • Choose the right model for a given problem.
  • Apply and evaluate models on real data.
  • Make a model available in the cloud and enable it to be queried via the API.

7
Deep Learning and neural networks: the basics

  • Understand the concepts of Machine Learning and the evolution towards Deep Learning (deep neural networks).
  • Master the theoretical and practical foundations of neural network architecture and convergence.
  • Know the different fundamental architectures and master their fundamental implementations.
  • Master neural network implementation methodologies, and the strengths and limitations of these tools.
  • Know the basic building blocks of Deep Learning: simple, convolutional and recursive neural networks.
  • Learn about more advanced models: auto-encoders, gans, reinforcement learning.

8
Deep Learning with PyTorch

  • Manipulate images and text with PyTorch.
  • Set up neural network training from scratch or using transfer learning.
  • Use PyTorch modules to load data.
  • Knowledge of distributed training.
  • Knowledge of new meta-architectures such as transformers.


Dates and locations
Select your location or opt for the remote class then choose your date.
Remote class

Dernières places
Date garantie en présentiel ou à distance
Session garantie

REMOTE CLASS
2026 : 2 Apr., 15 June, 28 Sep., 14 Dec.

PARIS LA DÉFENSE
2026 : 2 Apr., 15 June, 28 Sep., 14 Dec.